PROGRAM EDUCATIONAL OBJECTIVES

- Prepare and train students in theoretical foundations to work with cutting edge computing technologies and design solutions to complex engineering problems, making them ready to work in industrial environment.
- Develop all round skills such as team building, inter-personal skills, and leadership qualities in order to effectively communicate with engineering community and with society, at large.
- Promote research culture through internships, research assistantships, research-oriented projects, sponsored and collaborative research and enable them to pursue higher studies in computer science and related fields.
- To inculcate social concern meeting the requirements of prospective employers and to develop an ability to innovate efficient computing solutions for better society.
- Create professionally superior and ethically strong globally competent employees and entrepreneurs.

PROGRAM OUTCOMES

- Apply mathematical and theoretical principles in the modelling and design of high-quality computer-based systems using state-of-the-art computer technology.
- Conduct in-depth study of research literature in the area of Computer Science, analyse problems in order to arrive at substantiated conclusions using first principles of mathematics, and allied sciences.
- Design, implement and evaluate Computer Systems, programs and processes that meet partial/ complete specifications with concern for society, environment and culture.
- Design and conduct experiments, collect data, analyze and interpret the results to investigate complex engineering problems in the field of Computer Science.
- Apply state-of-the-art techniques and modern computer-based tools in prediction, comparison and modelling of complex engineering activities.
- Have sound understanding of professional, legal, security and social issues and responsibilities in engineering actives involving Computer Science.
- Understand societal and environmental concerns and demonstrate responsibility in sustainable development of computer-based solutions.
- Be aware of ethical and professional responsibilities in engineering situations; make informed judgments regarding intellectual property and rights in relation to computer-based solutions in global, economic, environmental and societal contexts.
- Able to function effectively in teams to establish goals, plan tasks, meet deadlines, manage risk and produce high-quality technical solutions.
- Contribute and communicate effectively with the society, be able to write effective reports and design documents by adhering to appropriate standards, make effective presentations, give and receive clear instructions.
- Apply skills in clear communication, responsible teamwork and time management by, for example, managing a team or project and communicating with external stakeholders.
- Recognize the need for and demonstrate an ability to engage in continuing professional development in its broadest sense.

UE19CS101:
INTRODUCTION TO COMPUTING USING PYTHON (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Learn basics of computer hardware and programming.
- Learn how to solve a given problem.
- Learn various paradigms of programming.
- Learn Python as a programming language.
- Learn how to combine data structures and functions available in Python to solve problems.

Course Outcomes:
At the end of the course, the student will be able to:
- Outline the process involved in executing a computer program.
- Program effectively using Python programming language.
- Think using different paradigms of programming.

Course Content:
3. Functions: Definition, Call, Positional and Keyword Parameters, Default Parameters, Variable Number of Arguments, Modules - Import Mechanisms, Functional Programming - map, filter, reduce, max, min and lambda functions, List Comprehension.
5. File Processing: Reading and Writing Files.

Pre-requisite Courses: None.

Reference Book(s):

UE19CS102:
INTRODUCTION TO COMPUTING USING PYTHON LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Learn basics of computer programming.
- Learn how to solve a given problem.
- Learn to use various paradigms of programming.
- Learn Python as a programming language.
- Learn how to implement data structures and functions available in Python to solve problems.
Course Outcomes:
At the end of the course, the student will be able to:
• Illustrate problem solving using Python programming.

Course Content:
1. UNIX Commands and Utilities.
2. Program to demonstrate Input Output Functions, Operators and Expressions.
3. Program to demonstrate the Usage of Libraries.
4. Program to demonstrate Control Structures.
5. Program to demonstrate Control Structures.
6. Program to demonstrate Lists and Tuples.
7. Program to demonstrate Sets and Dictionaries.
8. Program to demonstrate String Related Operations.
9. Program to demonstrate the Usage of Functions.
10. Program to demonstrate Functional Programming.
11. Program to demonstrate Functional Programming.
12. Program to demonstrate File Handling in Python.

Pre-requisite Courses: None.

Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE19CS151:
PROBLEM SOLVING WITH C (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Learn how to solve common types of computing problems.
• Learn to map problems to programming features of ‘C’.
• Understand computer programming and its roles in problem solving.
• Understand and develop well-structured programs using ‘C’ language.
• Learn the basic data structures through implementation in ‘C’ language.

Course Outcomes:
At the end of the course, the student will be able to:
• Analyze the given problem and develop an algorithm to solve the problem.
• Optimize the solution given for an existing problem.
• Use ‘C’ language constructs in the right way.
• Design, develop and test programs written in ‘C’.

Course Content:
3. **Prioritized Scheduling**: Functions, Structures and Unions, Dynamic Memory Management, Lists, Priority Queue.
4. **Sorting**: Sorting, Combination of Structures, Arrays and Pointers, Callback, Sorting using Callback.
5. **File Handling, Enums, Bit Fields, Storage Class, Qualifiers, Life and Scope, Pre-Processor Directives, Conditional Compilation, Pragmas.**

Pre-requisite Courses: None.

Reference Book(s):

UE19CS152: PROBLEM SOLVING WITH C LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Learn and implement how to solve common types of computing problems.
- Use data types and control structures of ‘C’.
- Learn to map problems to programming features of ‘C’.
- Learn to write good, portable ‘C’ programs.

Course Outcomes:
At the end of the course, the student will be able to:
- Analyze a given problem and implement an algorithm to solve the problem.
- Improve upon a solution to a problem.
- Implement the ‘C’ language constructs in the right way.
- Design, develop and test programs written in ‘C’.

Course Content:
1. Program to demonstrate Input, Output Functions and Control Structures.
2. Program to demonstrate Word/ Line/ Character Count in a Given Input Data.
3. Program to demonstrate Operators and Control Structures.
4. Program to demonstrate Character Input and Output.
5. Program to demonstrate Functions, Arrays and Pointers.
6. Program to demonstrate Strings, Pointers using Multiple Files Usage.
7. Program to demonstrate the use of Multi-Dimensional Arrays.
8. Program to demonstrate the usage of Structures, Array of Structures and Array of Pointers.
9. Program to demonstrate List using multiple files.
10. Program to demonstrate Enumerations.
11. Program to demonstrate File Handling in ‘C’.
12. Program to demonstrate File Handling in ‘C’.

Pre-requisite Courses: None.

Reference Book(s):
Course Objectives:
The objective(s) of this course is to,
- Fundamental (combinational and sequential) building blocks of digital logic circuits.
- Design of more complex logic circuits such as adders, multipliers and register files.
- Construction, using above logic circuits, of a microprocessor, and its functioning at the clock cycle level.
- I/O subsystem organization and operation.

Course Outcomes:
At the end of the course, the student will be able to:
- Perform analysis of given synchronous digital logic circuit.
- Design and implement small to medium scale digital logic circuits from given specification.
- Understand hardware level microprocessor operation and I/O organization, providing a foundation for the higher layers.

Course Content:
5. I/O Organization: Accessing I/O devices, Interrupts, DMA, Buses, Interface Circuits

Pre-requisite Courses: None.

Reference Book(s):
Course Objectives:
The objective(s) of this course is to,

- Enable the learner with the concepts of recursion and linear data structures viz., Linked Lists, Stacks and Queues.
- Enable the learner with the concepts of non-linear data structures viz., Graphs, Trees, Heaps, Trie and Hashing.
- Hone the learner such that they obtain the ability to compare different implementations of data structures and recognize the advantages and disadvantages of different implementations.
- Inculcate in the learner, the aspects of choosing the appropriate data structure and algorithm design method for a specified application and with the usage of standard libraries.

Course Outcomes:
At the end of the course, the student will be able to:

- Implement fundamental data structures viz., Lists, Stacks, Queues, Linked Lists, Binary Trees from first principles
- Demonstrate the use of appropriate data structures for a given problem.
- Design and implement solutions to basic practical problems using customized data structures.
- Develop quick solutions to practical problems using abstract data types.

Course Content:
4. **Binary Search Tree**: Definition, Implementation, Search, Insert, Delete operations. Building and Evaluating Binary Expression Tree, AVL Tree, Threaded BST. **Heap Tree**: Implementation, Insert, Delete, FindMin operations. Priority Queue using Arrays and Heap.
5. **Tries**: Definition, Implementation, Applications. **Hashing**: Hash Table, Hash Functions, Collision Handling by Open Addressing, Chaining.

Pre-requisite Courses: UE18CS151 – Problem Solving with C.

Reference Book(s):
UE18CS203: INTRODUCTION TO DATA SCIENCE (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,

- Provide insights about the basic roles of a Data Scientist. Develop a greater understanding of the importance of Data Visualization techniques.
- Develop problem-solving skills.
- Make inferences about the population parameters using sample data.
- Test a hypothesis about the population parameters to draw meaningful conclusions.
- Provide an understanding on the importance and techniques of predicting a relationship between the two sets of data and determine the goodness of fitted model.

Course Outcomes:
At the end of the course, the student will be able to:

- Develop various visualizations of the data in hand and communicate results of analysis effectively (visually and verbally).
- Analyze a real-world problem and solve the same with the knowledge gained from various distributions study.
- Analyze an extremely large data set and perform exploratory data analysis to extract meaningful insights.
- Develop and test a hypothesis about the population parameters to draw meaningful conclusions.
- Fit a regression model to data and use it for prediction.

Course Content:
5. Hypothesis and Inference: Errors in Hypothesis Testing, Power of a Test, Factors Affecting Power of a Test, Distribution Free Tests, Chi-Squared Test. Simple Linear Regression: Correlation, Inference on Population Correlation,
Building the Regression Model, Predictions using Regression Models, Residual Plots.

Pre-requisite Courses: None.

Reference Book(s):

UE18CS204: WEB TECHNOLOGIES I (3-0-0-0-3)

Course Objectives:

The objective(s) of this course is to,

- Introduce students to the basics of HTML, CSS, PHP and JavaScript.
- Familiarize students with the Document Object Model and enable them to create dynamic web pages that react to user input.
- Teach students about installing and configuring Apache Server.
- Introduce students to the newer features available as part of the HTML5 standard.

Course Outcomes:

At the end of the course, the student will be able to:

- Design visually appealing websites using HTML and CSS.
- Design solutions for programming questions using JavaScript.
- Create dynamic WebPages by manipulating the Document Object Model.
- Setup a web server and host a website with backend support.
- Incorporate the latest HTML5 features in the WebPages designed by them with fallback options wherever required.

Course Content:

1. **Introduction, UI Design and UX:** Internet, WWW, Web Servers and Browsers, URLs, Basic Markup, Images, Hyperlinks, Lists, Tables, Forms

2. **HTML5 and JavaScript:** Local Storage, Web Workers, Offline Web Applications, Drag and Drop, Introduction to Client-Side Scripting, JavaScript Basics, Screen Input and Keyboard Output, Functions, Objects, Hoisting, Arrays, JavaScript Objects

3. **DOM and DOM Events:** Accessing and modifying DOM, Events and Event Handlers - Load, Mouse, Synthetic Events, Key and Form Related Events, Event Bubbling, Cookies
4. **Apache:** MIME, http, httpd Server, Request Response Formats Basics, Configuration, Debugging, .htaccess

5. **PHP basics and Introduction to AJAX:** File Handling and System Calls, Strings and Regular Expressions, Arrays, Cookies, Sessions, Functions, Classes, Database Access. **AJAX:** Asynchronous GET/POST using XMLHttpRequest

6. **Pre-requisite Courses:** None.

Reference Book(s):

UE18CS205

DISCRETE MATHEMATICS AND LOGIC (3-0-0-0-3)

Course Objectives:

The objective(s) of this course is to,

- Develop logical thinking and its application to computer science with emphasis on the importance of proving statements correctly.
- Introduce fundamental discrete structures like Sets, Functions and Relations.
- Introduce Combinational objects and counting techniques.
- Draw similarities between Mathematical Induction and Recurrences and use them to design recursive functions.
- Introduce algebraic structures like Groups, Ring and their usage in coding theory.

Course Outcomes:

At the end of the course, the student will be able to:

- Comprehend formal logical arguments.
- Specify and manipulate basic mathematical objects such as Sets, Functions and Relations and will also be able to verify simple mathematical properties that these objects possess.
- Apply basic counting techniques to solve combinatorial problems.
- Design a recursive function by developing a Recurrence and prove its correctness using Mathematical Induction.
- Apply the concepts of algebraic structures in coding theory.

Course Content:

1. **Logic:** Propositional Logic, Propositional Equivalences, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference.

2. **Sets, Functions and Relations:** Sets and Set Operations, Functions, Relations and Their Properties, Representing Relations, Equivalence Relations, Partial Orderings

3. **Counting:** The Sum and the Product Rules, the Pigeonhole Principle, Permutations and Combinations, Binomial Coefficients.
4. **Induction, Recursion and Recurrence Relations:** Mathematical Induction, Strong Induction, Recurrence Relations. **Graphs:** Definition, Complete Graphs, Regular Graphs, Paths, Connectivity, Euler and Hamilton Graphs.

5. **Algebraic Structures:** The Structure of Algebras, Semi Groups, Monoids and Groups, Homeomorphisms, Normal Subgroups, Coding Theory, Hamming Codes.

Pre-requisite Courses: None.

Reference Book(s):

UE18CS206:

DIGITAL DESIGN AND COMPUTER ORGANIZATION LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,

- Explain the elements of digital system abstractions such as digital representations of information, Digital Logic, Boolean Algebra, State Elements and Finite State Machine (FSMs).
- Design simple digital systems based on these digital abstractions, using the "Digital Paradigm" including discrete sampled information.
- Use the "Tools of the Trade" - Basic Instruments, Devices and Design Tools.
- Work in a design team that can propose, design, successfully implement and report on a digital systems project.
- Communicate the purpose and results of a design project in written and oral presentations.

Course Outcomes:
At the end of the course, the student will be able to:

- Achieve knowledge and awareness of various components to design stable digital circuits.
- Analyze and design combinational circuits.
- Design and develop sequential circuits.
- Design and develop a basic microprocessor.
- Translate real world problems into digital logic formulations using Verilog.

Course Content:

1. Verilog Basics - I
2. Verilog Basics - II
3. Mux, Adder Design
4. ALU
5. Register File
6. Datapath
7. Program Counter
8. Control Logic
9. Microprocessor
10. Project Assignment (microprocessor based)
Pre-requisite Courses: None.

Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE18CS207:
DATA STRUCTURES LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Enable the learner with the concepts of recursion and linear data structures viz., Linked Lists, Stacks and Queues.
- Enable the learner with the concepts of non-linear data structures viz., Graphs, Trees, Heaps, Trie and Hashing.
- Hone the learner such that they obtain the ability to compare different implementations of data structures and recognize the advantages and disadvantages of the different implementations.
- Inculcate in the learner, the aspects of choosing the appropriate data structure and algorithm design method for a specified application and with usage of standard library.

Course Outcomes:
At the end of the course, the student will be able to:
- Implement fundamental data structures viz., Lists, Stacks, Queues, Linked Lists, Binary Trees from first principles.
- Demonstrate the use of appropriate data structures for a given problem.
- Design and implement solutions to basic practical problems using customized data structures.
- Develop quick and foolproof solutions to practical problems using abstract data types.

Course Content:
1. Implementation of a singly linked list with insert and other operations.
2. Implementation of a singly linked list with delete and other operations.
3. Implementation of a doubly linked list with insert and other operations.
4. Implementation of a doubly linked list with delete and other operations.
5. Implementation of a stack using a singly linked list.
6. Parentheses matching using stack data structure.
7. Infix to Postfix conversion.
8. Implement a queue using a singly linked list.
11. Implementation of a queue using two stacks.
12. Implementation of a BST and tree traversals methods.
13. Counting leaf and non-leaf nodes in a BST.
15. Implementation of a Priority Queue using a min-heap.

Pre-requisite Courses: None.
Course Objectives:
The objective(s) of this course is to,

- Learn to design and analyze algorithms with an emphasis on the resource utilization in terms of time and space.
- Learn various techniques in development of algorithms so that the effect of problem size and architecture design on the efficiency of the algorithm is appreciated.
- Learn to prove the correctness of algorithms.

Course Outcomes:
At the end of the course, the student will be able to:

- Identify the design technique used in an algorithm.
- Design an algorithm for a problem in a known design technique.
- Prove the correctness of an algorithm.
- Analyze the resource utilization of an algorithm in terms of time and space.
- Understand the limits of algorithms and the ways to cope with the limitations.

Course Content:

2. **Brute Force**: Sequential Search, Brute Force String Matching, Selection Sort, Bubble Sort, Depth-First Search and Breadth-First Search, Exhaustive Search. **Divide-and-Conquer**: Merge Sort, Quick Sort, Binary Search, Binary Tree Traversals, Multiplication of Large Integers, Strassen’s Matrix Multiplication and Master Theorem.

5. **Greedy Technique**: Prim’s Algorithm, Kruskal’s Algorithm and union-find algorithm, Dijkstra’s Algorithm, Huffman Trees. **Limitations of Algorithm Power**: Lower-Bound Arguments, Decision Trees, P, NP, and NP-Complete Problems. **Coping with the Limitations of Algorithm Power**: Backtracking, Branch-and-Bound.

Pre-requisite Courses: UE18CS151 – Problem Solving with C.
Reference Book(s):

UE18CS252: DATABASE MANAGEMENT SYSTEMS (3-0-0-0-3)

Course Objectives:
The objective(s) of this course is to,

- Introduce fundamental concepts, terminology and application of relational databases.
- Teach design concepts and creation of relational databases.
- Teach basic and advanced SQL commands.
- Provide overview of database programming and procedural languages.
- Teach normal forms and normalization.

Course Outcomes:
At the end of the course, the student will be able to:

- Construct an Entity-Relationship (E-R) model from specifications and transform it to a relational model.
- Design databases and apply normalization techniques.
- Construct queries in SQL and Relational Algebra to perform CRUD (Create, Retrieve, Update and Delete) operations on database.
- Understand and apply the concepts of database programming.
- Design and Build a database application using a RDBMS.

Course Content:

1. **Introduction to Database and Conceptual Design using ERD:** Introduction to Databases, Conceptual Model, Conceptual Design using ERD, Entity, Weak Entity, Relationships, Attributes and Keys, Roles and Constraints,
3. **SQL:** SQL Data Definition, Primary Data Types and Advanced Data Types like CLOB, BLOB, Specifying Constraints in SQL, Basic Retrieval Queries, Insert, Delete, Update and Schema Change Statements in SQL, Advanced SQL Queries, Other SQL Constructs :WITH and CASE, Specifying General Constraints as Assertions and Triggers, Views, Additional Features of SQL, Database Programming, PL/SQL.
4. **Database Design:** Informal Design Guidelines for Schemas, Functional Dependencies, Inference Rules, Closure, Equivalence, Minimal Cover, Normal Forms Based on Primary Keys (1st, 2nd and 3rd NF), General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form, Properties of Relational Decompositions, Overview of Higher Normal Forms.

5. **DBMS Architecture and Database Security:** Three-Schema Architecture, Data Abstraction and Data Independence, Database Languages and Interfaces, DBMS Modules, SQL commands for database transactions (BEGIN, END, COMMIT, SAVEPOINT, ROLLBACK) and Database Security (CREATE USER, ROLE, GRANT and REVOKE).

Pre-requisite Courses: None.

Reference Book(s):

UE18CS253:

MICROPROCESSOR AND COMPUTER ARCHITECTURE (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Introduce concepts of basic processor architecture and its design.
- Introduce concepts of pipeline architecture and hazards.
- Bring in the study of memory hierarchy, cache memory and its optimizations.
- Introduce multi-core/ many core processor architecture and programming.

Course Outcomes:
At the end of the course, the student will be able to:
- Demonstrate ability to understand the design of different instruction sets like RISC/ CISC and their addressing modes.
- Demonstrate the ability to understand the design of a pipelined processor and its challenges.
- Demonstrate the use of tools to analyse the performance of programs on different architectures.
- Design alternative memory hierarchy layouts and optimizatios.
- Demonstrate and appreciate modern trends in architecture such as multi-core architectures.

Course Content:
1. **Introduction to Architecture:** Introduction, ISA Classification - RISC and CISC, Memory Addressing, Operands - Types and Size, Instruction Set - Operations, Control Flow, Instruction Encoding, Case Study - ARM/ MIPS/ x86 Processor.
2. **Introduction to Pipeline:** 3 - Stage Pipelining, 5 - Stage Pipelining, Pipeline Hazards - Data, Structural and Branch Hazards, Branch Prediction Mechanisms, Performance Metrics, Trends in Technology, Power and Energy in Integrated
Circuits.

4. **Cache Optimizations and Parallel Architecture**: Cache Optimization 5 and 6, Introduction to Parallel Architecture, Parallel Programming models, memory architecture

5. **Advances in Architecture**: Amdahl's Law, Gustafson Law, Instruction Level Parallelism, Multi-Core Architecture.

Pre-requisite Courses: None.

Reference Book(s):

UE18CS254: THEORY OF COMPUTATION (3-0-0-0-3)

Course Objectives:
The objective(s) of this course is to,
- Teach students to construct basic machines like DFA, NFA which represent Regular Languages.
- To familiarize students to construct Regular Expressions, Regular Grammars and to identify Non - Regular Languages.
- Teach students to identify Context Free Languages, to construct Push down Automata which represent Context Free Languages, to convert the given grammar to various normal forms and to make use of Membership Algorithm.
- Teach students to understand closure properties of Context Free Languages, to identify Non - Context Free Languages and to construct Turing Machines.
- To familiarize students with concepts like Recursively Enumerable languages, Recursive Languages, PCP and Undecidable Problems.

Course Outcomes:
At the end of the course, the student will be able to:
- Design simple machines like DFA, NFA, convert NFA to DFA and minimize a given DFA.
- Construct regular expressions for different languages, verify that some languages are regular and some are not.
- Analyze the difference between Regular Languages and Context Free Languages, design Push Down automata, construct Context Free Grammars, convert one form of the grammar to other form
- Enumerate the properties of Context Free Grammars, verify that some languages are context free and some are not, design Turing Machines, and analyze the difference between acceptability and decidability.
- Analyze the difference between Recursive and Recursively Enumerable Languages, Decidable Languages, Turing – Recognizable and Co – Turing – Recognizable, some problems that cannot be solved by Turing Machines, reduce one Undecidable Problem to another, Undecidable Problems for Recursively
Enumerable Languages, Post Correspondence Problem, Undecidable Problem for Context – Free Languages.

Course Content:

2. **Regular Languages and Grammars**: Regular Expressions, Construction, Equivalence of Regular Expressions, Regular Languages and Finite Automata, Regular Expressions in Practice, Regular Grammars, their Construction and Equivalence to Finite Automata. **Properties of Regular Languages**: Closure Properties of Regular Languages, Answering Questions About Regular Languages, Pumping Lemma and identifying Non-Regular Languages.

5. **Turing Machines**: The Standard Turing Machine, Constructing Turing Machines, Church–Turing Thesis, Universal Turing Machine. **Hierarchy of Formal Languages and Automata**: Recursive and Recursively Enumerable Languages, Diagonalization, Chomsky Hierarchy. **Limits of Algorithmic Computation**: Post Correspondence Problem, the Halting Problem of Turing Machines, Undecidable Problems.

Pre-requisite Courses: None.

Reference Book(s):

UE18CS255:
DESIGN AND ANALYSIS OF ALGORITHMS LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
• Understand the algorithm design techniques including Brute Force, Divide and Conquer, Decrease and Conquer, Transform and Conquer, Dynamic Programming and Greedy technique.
• Make Space and Time Tradeoffs while designing algorithms.
• Analyze the algorithms with absolute running time of the algorithm implementations and compare it with the asymptotic complexity classes of the algorithms.

Course Outcomes:
At the end of the course, the student will be able to:
• Design and implement algorithms of Brute Force Technique.
• Design and implement algorithms with Divide and Conquer technique.
• Design and implement algorithms with Decrease and Conquer and Transform and Conquer techniques.
• Design and implement algorithms with Space and Time Tradeoffs.
• Design and implement optimization algorithms using Dynamic Programming and Greedy technique.

Course Content:
1. Implementation of Brute Force algorithms.
 Sequential Search Algorithm
 Naive String Matching Algorithm
 Selection Sort Algorithm
 Bubble Sort Algorithm
 Exhaustive Search Algorithm for solving the Travelling Salesman Problem
 Merge Sort Algorithm
 Binary Search Algorithm
 Quick Sort Algorithm
 Insertion Sort Algorithm
 AVL Trees
 Heap Sort Algorithm
 Depth - First Search Algorithm
 Breadth - First Search Algorithm
 Topological Sort.
4. Implementation of Space and Time Trade-off algorithms.
 Distribution Counting Sort Algorithm
 Horspool’s Algorithm for String Matching
 Warshall’s algorithm
 Floyd’s Algorithm
 Prim’s algorithm
 Dijkstra’s algorithm

Pre-requisite Courses: None.

Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE18CS256:
Course Objectives:
The objective(s) of this course is to,
- Implement assembly language programs and develop strong competencies in contemporary ISAs.
- Develop, edit, compile and debug assembly language programs using present-day simulators.
- Know various addressing modes that are defined in a given instruction set architecture and illustrate how machine language instructions in that architecture identify the operand(s) of each instruction.
- Practice interfacing experiments using various sensors with Arduino board.
- Learner to imbibe the skills of formulation of a complex problem, design a suitable solution using Arduino/ Raspberry Pi processors and demonstrate the end results.

Course Outcomes:
At the end of the course, the student will be able to:
- Inculcate the importance of instruction set architecture and their fundamental concepts using assembly language programming.
- Demonstrate editing, compiling, executing and debugging an assembly language program of a contemporary microprocessor.
- Demonstrate the usage of subroutines and recursion supported by the ISA.
- Imbibe strong assembly language programming skills by implementing solutions to problems using simulators.
- Instilling the idea to formulate a complex problem definition, approach to solve the problem, methodology to apply and implement suitable algorithm and check for the final results.

Course Content:
1. Introduction to Instruction Set – ARM/ x86 Processor. Sample programs using Simulator.
2. Programs on ARM/ x86 using Simulator.
3. Programs on ARM/ x86 using Simulator.
4. Case Study - 3 Stage Pipeline using Simulator.
5. Case Study - 5 Stage Pipeline using Simulator.
6. Case Study - Data Hazards using Simulator - RAW, WAR, WAW.
7. Case Study - Memory Performance Analysis using Simulator.
8. Confirmation of Mini Project Titles and Literature Survey.
9. Mini Project.
10. Mini Project.
12. Simple Scalar Simulator, Memory Performance, Simcache.

Pre-requisite Courses: None.

Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE17CS301:
COMPUTER NETWORKS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,

• Impart the core principles of Information Communication Technology, which is an inevitable part of the modern Internet, starting from the layered architecture.
• Teach the principles of OSI Layer and introduce sample popular Application Layer protocols - HTTP, DNS.
• Provide an insight into the most widely used Transport Layer protocols - TCP and UDP. Convey dimensions of Network layer, through the Internet Protocol – IPv4 and IPv6 that glues billions of hosts across the globe and associated routing protocols.
• Give an essence of the Data Link Layer, building blocks of Local Area Network and consolidate how all layers are involved to provide a browsing application.
• Provide the experience of use of network tools to imbibe the diagnostic and debugging skills to deal with networking issues.

Course Outcomes:
At the end of the course, the student will be able to:

• Sketch the big picture of complex Internet, in terms of building blocks, organized layered architecture.
• Analyze HTTP, DNS and other protocols and use socket programming.
• Illustrate how reliable communication is achieved on a public internet using TCP and select the right transport protocol for a given application.
• Design subnets, configure routers in simulated environment and analyze IP using a protocol analyzer.
• Demonstrate the role of multiple protocols used in all the layers while running a popular application like browsing.

Course Content:
1. Introduction to Computer Networks and the Internet: Building Blocks of Communication Networks and Internet, Elements of Network Edge, Access Networks and Physical Media, Network Core, Concepts of Switching, Layered Architecture - Introduction, List of Responsibility and Functions of Each Layer, Introduction to Network Tools such as Wireshark, nc, ssh.

Pre-requisite Courses: None.

Reference Book(s):

UE17CS302:
INTRODUCTION TO OPERATING SYSTEMS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Provide an understanding on the various components of an Operating System.
- The course focuses on fundamental problems and optimal solutions for resource management in operating systems such as process, disk and memory management.
- The course will introduce design principles and tradeoffs in the design of Operating Systems.
- The course will also introduce the interface for interacting with a contemporary Operating system such as Linux.

Course Outcomes:
At the end of the course, the student will be able to:
- Gain extensive knowledge on principles and modules of Operating Systems.
- Understand the design of various algorithms for scheduling and their relative performance.
- Design pieces of operating systems such as process management, concurrent processes and threads, memory management and virtual memory.
- Use tools and interface of the operating system.
- Explore design tradeoffs in designing various components of an Operating System.

Course Content:
1. **Introduction and CPU:** What Operating Systems Do? **Introduction to Virtualization of Resources:** CPU/ Memory, Concurrency, Persistence. The Process Abstraction, Process States, Description, Control, API (fork ()/ exec ()). **Scheduling:** Workload Assumptions, Metrics, Types of Scheduling: FIFO, SJF, Response Time, Round Robin, Multi - Level Feedback Queue. **Case Study:** Linux/ Windows/ UNIX Scheduling Algorithms.
2. **Concurrency:** Introduction and Threads, Types of Threads, Multi - Core/ Multi - Threading, Shared Data, **Thread API:** Thread Creation, Completion, Locks, Condition Variables, Compilation. **Mutual Exclusion and Synchronization:** Software Approaches, Principles of Concurrency, Hardware Support, Semaphores,

3. **Memory:** Requirements, Partitioning, Paging, Segmentation, Memory API - malloc/ free, Errors. **Virtual Memory:** Hardware and Control Structures, OS Support, Address Translation, Dynamic Relocation, Segmentation, Paging, TLBs, Context Switches, Replacement Policy - LRU, Design Alternatives - Inverted Page Tables, Bigger Pages, Swapping. **Case Study:** Linux/ UNIX Memory Management.

Pre-requisite Courses: UE17CS202 – Data Structures, UE17CS253- Microprocessor and Computer Architecture.

Reference Book(s):

UE17CS303:
MACHINE LEARNING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Formulate a well-defined Machine Learning problem with clear metrics.
- Familiarize with techniques for Dimensionality Reduction and Computational Efficiency.
- Understand the notions of Hypotheses Space, Hypotheses Structure and Search.
- Become conversant with types of Machine Learning Algorithms, their applicability and Inductive Bias.

Course Outcomes:
At the end of the course, the student will be able to:
• Distinguish categories of Data Attributes, Dimensions, Sample Sizes.
• Acquire a thorough understanding of Supervised, Unsupervised Learning.
• Understand Logistic and Linear Regression and Function Estimation.
• To cluster and classify data.
• Extract Rules and Associations and provide impactful recommendations from data.
• Decide on the data that matters for the learning problem at hand.

Course Content:

4. **Unsupervised Learning and Dimensionality Reduction**: Hierarchical vs. non-hierarchical clustering, Agglomerative and divisive clustering, K-means clustering, Bisecting k-means, K-Means as special case of Expectation Maximization, Apriori algorithm - Association analysis, the Apriori principle. Finding frequent itemsets, mining association rules, FP-growth – FP trees, Mining frequent items from an FP-Tree, Dimensionality reduction techniques – PCA, SVD.

Pre-requisite Courses: UE17MA251 – Linear Algebra, UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):
Course Objectives:
The objective(s) of this course is to,

- Make familiar with some of the popular software tools being used in the networking industry.
- Facilitate the student to see the packet and sense the protocol in both virtual and real time environment; as a result understand the computer networks domain.
- Impart the principles of architecting a typical network through design, engineering and configuration.
- Develop the skills of analysing a protocol which would help in troubleshooting a network.
- Create an environment to apply programming knowledge and skills to computer network domain.

Course Outcomes:
At the end of the course, the student will be able to:

- Effectively use the industry standard network simulation tool - CISCO PACKET TRACER and analysis tool – Wireshark and the emulator ClayNet.
- Interpret a protocol in terms of syntax, semantics and sequence of actions.
- Design, engineer and test the network in a virtual environment.
- Analyse standard protocols using industry standard protocol analyser.
- Apply algorithmic approach and coding to implement the principles/ protocols of networking.

Course Content:
1. Study the basic networking tools- Wireshark, and basic commands like TCPDUMP, PING, TRACEROUTE, NETCAT.
2. Study the principle of a switched network using the simulator - CISCO PACKET TRACER
4. Understand Persistent and Non Persistent HTTP Connections and Corresponding Performance Impact.
5. Understanding working of HTTP headers: Conditional GET, Cookies and Authentication.
6. Design and Understand and analyse basic topologies in ClayNet.
7. Write a program to create a simple web server - client system using socket programming.
8. IPV4 Addressing
9. IPV6 Addressing
10. ICMP Redirect and Study Unknown Unicast and broadcast flooding and broadcast storm in L2 network.
11. Understanding TTL expiry.

Pre-requisite Courses: None.
Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE16CS305:
INTRODUCTION TO OPERATING SYSTEMS LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Introduce various interfaces of the Operating system, including system calls.
- Understand the structure of a process, how it is created and scheduled and synchronization between processes/threads
- Understand concepts of memory management such as paging
- Understand concepts of persistent storage of process and interfaces
- Understand the design of an operating system and process to modify parts of the operating system

Course Outcomes:
At the end of the course, the student will be able to:
- Create processes, threads and synchronize between processes/threads
- Modify, compile and boot a standalone operating system
- Design and implement process scheduling algorithms
- Implement new system calls
- Design files system and memory management modules in an Operating system at an introductory level.

Course Content:
1. Getting used to basic commands on Linux – process creation, monitoring, file system tree, process states, file system commands
2. Build simple client server program to transfer file from client to server
3. Build a simple shell to transfer a file from the server and pipe it through a word count program
4. Build a multithreaded server to transfer files from server to client. Each thread will read one file and send it back.
5. Compile and boot, Boot xv6
6. To add new systems call (for priority of process) to xv6. Add command line to see it.
7. Process management - process scheduling. Modify scheduler to take into account the new process priority and schedule accordingly
8. Implement corner cases in the process management. Should not cause starvation.
9. Memory Management - Physical memory
10. Memory Management - Virtual memory
11. File System on xv6 - structure (first week to understand structure)
12. File system on xv6 – large size (may take 2 weeks)

Pre-requisite Courses: None.

Reference Book(s):
UE17CS311:
ADVANCED ALGORITHMS (4-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand basics of Recurrences and Amortized Complexity Analysis of Data Structures.
- Understand a few String Matching/ Prediction Algorithms and their applications.
- Understand the design strategy of Dynamic Programming.
- Understand some Polynomial and Number Theoretic Algorithms.
- Learn about Randomized Algorithms.

Course Outcomes:
At the end of the course, the student will be able to:
- Perform Amortized Analysis on complex data structures.
- Decide usage of Randomized Algorithms for practical intractable problems.
- Compare and evaluate String Matching Algorithms.
- Apply Number Theoretic concepts in applications like Cryptography.
- Solve complex problems using Dynamic Programming.
- Implement an efficient FFT Algorithm.

Course Content:
5. Polynomials and FFT: Representation of Polynomials, DFT and FFT, Efficient Implementation of FFT.

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):
The objective(s) of this course is to,

- Acquire knowledge on Parallel and Distributed Databases.
- Learn topics of Data Warehousing for solving analytical data processing problems.
- Learn basics of NoSQL Databases and Big Data systems.
- Learn specialized Application Databases.
- Choose the appropriate database and storage technique.

Course Outcomes:
At the end of the course, the student will be able to:

- Analyze issues related to implementing relational database for large datasets.
- Apply Data Warehousing techniques for solving analytical processing requirements.
- Apply Parallel and Distributed Database approach to problems of large databases.
- Select the NoSQL (non-relational database) approach to the “Big-Data” problem.
- Apply specialized databases for advanced applications.

Course Content:

1. **Review of Relational Data Model:** Reporting and Analytical databases, Data Warehousing, OLAP, SQL Analytical Functions, Column Oriented Storage, Introduction to Data Mining.
2. **Parallel and Distributed Databases:** Concepts, Parallel and Distributed databases and issues.
3. **Introduction to NoSQL:** Emergence of NoSQL databases, Characteristics of NoSQL, Categories of NoSQL systems, CAP Theorem. **NoSQL Databases:** Document Databases with Example (MongoDB, CouchDB), Column Oriented Databases with Example (Cassandra), Key-Values Stores with Example (Riak, Voldemort), Graph Databases with Example (Neo4J).
4. **Introduction to Big Data:** What is Big Data, Hadoop, HDFS, and Apache Spark.
5. **Specialty Databases:** In-Memory Databases for RDBMS (VoltDB) and Key-Value Store (Redis), Time-Series DBMS, Search Engines, Spatial, Temporal, Deductive.

Pre-requisite Courses: UE17CS252 – Database Management Systems.

Reference Book(s):

Course Objectives:
The objective(s) of this course is to,
• Provide an introduction to Big Data.
• Introduce storage technologies for Big Data.
• Introduce computational issues and infrastructure for Big Data.
• Introduce algorithms for processing Big Data.
• Application of Big Data techniques to various real life problems.

Course Outcomes:
At the end of the course, the student will be able to:
• Explore various characteristics of Big Data Problems.
• Understand principles and design alternative storage technologies for Big Data.
• Design Big Data applications using available infrastructure for Big Data through practical assignments.
• Apply and differentiate between algorithms for processing Big Data and Normal Algorithms.
• Apply Big Data techniques are in real life problems through a group based project.

Course Content:
1. Introduction: Big Data definition, Challenges and opportunities with Big Data, Data intensive scientific discovery and the role of Big Data, History, MapReduce – Storage (HDFS), Computation model, Case Study: Google. Introduction to sample Big Data Algorithms – matrix multiplication and pagerank.
2. Big data infrastructures (Compute/Storage): MapReduce architecture and internals, Overview of Hadoop Ecosystem, Relational operators on MapReduce, case study: HIVE, Other storage - HBase
3. In memory computation: Issues with Hadoop, Scala/Python?, Spark introduction and architecture, Spark – DataFrames
4. Real time analysis: Streaming analysis use cases, Real time v/s near real time, Streaming Spark, Kafka, Streaming Algorithms - introduction, Case Study.
5. Advanced Analytics on Big Data : Introduction of Complexity modelling of Big Data algorithms, Clustering algorithms, Case study : MLLIB, YARN/Mesos, Project

Pre-requisite Courses: UE17CS252 – Database Management Systems.

Reference Book(s):
Course Objectives:
The objective(s) of this course is to,
- Teach the basic concepts of Multimedia and Hypermedia, World Wide Web and Overview of Multimedia Software Tools and exploring multimedia applications.
- Train students to understand graphics and image data representation, color in image and video and types of video signals and basics of digital audio.
- Teach various text, image and video compression standards.
- Identify the current and future issues related to multimedia technology.
- Identify both theoretical and practical aspects in designing multimedia systems surrounding the emergence of multimedia technologies using contemporary hardware and software technologies.

Course Outcomes:
At the end of the course, the student will be able to:
- Apply different compression techniques depending on the multimedia object streams, interpret the various standards for multimedia communications and their features.
- Demonstrate multimedia and its applications to potential clients.
- Identify and describe the function of the general skill sets in the multimedia industry.
- Identify the basic hardware and software requirements for multimedia development and playback.
- Design and develop applications and exercise proper design choices and meet Quality of Service requirements.

Course Content:
4. Image Compression Standards: The JPEG Standard, the JPEG2000 Standard, the JPEG-LS Standard, Bi-Level Image Compression Standards. Basic Video Compression Techniques: Introduction to Video Compression, Video Compression Based on Motion Compensation, Search for Motion Vectors, H.261, H.263.
Pre-requisite Courses: None.

Reference Book(s):

UE17CS315: PRINCIPLES OF PROGRAMMING LANGUAGES (3-2-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Enable students to learn constructs in a language.
- Enable students to design a new construct/ language.
- Enable students to choose appropriate language for real world problem solving, based on the required features.
- Enable students to evaluate various language design features considering the programming paradigm.
- Introduce various paradigms and their support in language design.

Course Outcomes:
At the end of the course, the student will be able to:
- Choose a particular language for problem solving depending on the application domain.
- Analyze and compare programming language concepts.
- Analyze the implementation issues related to a language design.
- Identify the language design features of any language and evaluate them.
- Identify language features required for supporting various paradigms.

Course Content:
2. Type Checking and Scopes (continued...): Type Equivalence, Scope, Scope and Lifetime, Referencing Environments. Data types: Introduction, Primitives, Character, User Defined, Array, Associative, Record, Union, Pointer and Reference Types, Design and Implementation Issues Related to These Types, Names, Variable, Concept of Binding, Type Checking, Strong Typing, Type Compatibility, Named Constants, Variable Initialization. Expressions and Statements: Short Circuit Evaluation, Mixed Mode Assignment, Assignment Statements, Cascading Operators.
4. **Functions:** Design Issues for Functions, User Defined Overloaded Operators, Co-Routines and Function Closures. **Abstract Data types:** Abstractions and Encapsulation, Introduction to Data Abstraction, Design Issues, Object Oriented Concepts with Reference to Java and Python.

5. **Exception handling:** Exceptions, Specifications, Exception Propagation. **Logic Programming Language:** Introduction and Overview of Logic Programming, Basic Elements of Prolog, Application of Logic Programming. **Functional Programming Languages:** Introduction, Fundamentals of FPL, Applications of Functional Programming Languages and Exploration of the Features, Comparison of Functional and Imperative Languages.

Pre-requisite Courses: None.

Reference Book(s):

UE17CS321: COMPUTER GRAPHICS AND VISUALIZATION (4-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Impart the basics of computer graphics, different graphics systems and applications of computer graphics.
- Discuss various algorithms for scan conversion and filling of basic objects and their comparative analysis.
- Introduce the use of geometric transformations on graphics objects and their application in composite form.
- Impart frame extraction with different clipping algorithms and transformation to a graphics display device.
- Introduce projections and visible surface detection techniques for display of 3D scene on 2D screen and rendering of projected objects to naturalize the scene in 2D view.

Course Outcomes:
At the end of the course, the student will be able to:
- Demonstrate the fundamentals of computer graphics and display pipeline systems.
- Be able to draw different 2D objects using scan conversion algorithms and also fill basic objects and perform their comparative analysis.
- Use geometric transformations on graphics 2D objects and demonstrate their application in composite form.
- Be able to extract a 2D object using clipping algorithms and apply transformations to a graphics display system.
- Apply Graphics in greater depth to more complex courses like Image Processing, Virtual, Augmented Reality, etc.,

Course Content:
1. **Implementation:** Basic Implementation Strategies, Four Major Tasks, Clipping, Line-Segment Clipping, Polygon Clipping, Clipping of Other Primitives, Clipping in Three Dimensions, Rasterization, Bresenham’s Algorithm, Polygon Rasterization, Hidden-Surface Removal, Anti-Aliasing, Display Considerations.

3. **Geometric Objects and Transformations-I:** Scalars, Points, and Vectors, Three-Dimensional Primitives, Coordinate Systems and Frames, Modelling a Colored Cube, Affine Transformations, Rotation, Translation and Scaling.

4. **Geometric Objects and Transformations-II:** Geometric Objects and Transformations, Transformation in Homogeneous Coordinates, Concatenation of Transformations, OpenGL Transformation Matrices, Interfaces to Three Dimensional Applications, Quaternions.

5. **Viewing:** Classical and Computer Viewing, Viewing with a Computer, Positioning of the Camera, Simple Projections, Projections in OpenGL. Introduction to animation and rendering, lights and shades

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):

Course Objectives:
The objective(s) of this course is to,
- Provide an insight into data pre-processing, summarization and visualization techniques.
- Teach role of data analytics in business decision making.
- Teach model building and validation using various techniques.
- Develop hands-on experience in a relevant project based on real-life data.
- Teach the skill of effectively communicating the results of data analytics.

Course Outcomes:
At the end of the course, the student will be able to:
• Perform exploratory data analysis on a given set of data including visualization techniques.
• Analyze data to infer underlying patterns and formulate recommendations.
• Build time series models and use them for prediction.
• Perform text analysis involving classification and clustering.
• Interpreting Business values from predictive models.

Course Content:
1. **Exploratory Data Analysis and Visualization**: Introduction, Data Sources, Data Cleaning, Dimensionality Reduction, Data Summarization, Visualization – Graphics and Plotting (R Graphics and Relevant Packages and Maps), Case Studies.
2. **Regression Analysis**: Multiple Regression, Logistic Regression, Lasso regression, Case Studies.
3. **Recommendation Systems**: Collaborative filtering, Knowledge based filtering, Decision trees and Agglomerative clustering with the mention of KNN, SVM, and DB scan(including a brief introduction to text classification/clustering,)Mining of Association Rules and evaluation of recommendation system, Case Studies.
5. **Advanced Models**: LSA as an application of SVD, Sparse PCA, Discrete Markov Chain, Confounding variables.

Pre-requisite Courses: UE17CS203 – Introduction to Data Science, UE17MA251-Linear Algebra

Text Books:

Reference Book(s):

UE17CS323:
Fuzzy Logic (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Learn about formal methods to represent “vague” and “less” mathematical knowledge.
• Combine some of the traditional design approaches with Fuzzy Logic.
• Exposure to new and exciting applications of “vague” knowledge processing.

Course Outcomes:
At the end of the course, the student will be able to:
• Have a broad knowledge of Fuzzy Logic operations.
• Demonstrate the ability to think critically in making decisions based on Fuzzy Logic.
• Apply a new thinking methodology to real life problems including engineering ones.

Course Content:
Means Clustering - Hard c-Means (HCM), Fuzzy c-Means (FCM), Classification Metric, Hardening the Fuzzy c-Partition, Similarity Relations from Clustering.

Pre-requisite Courses: UE17CS205 - Discrete Mathematics and Logic.

Reference Book(s):

UE17CS324:
COMPUTATIONAL APPROXIMATION - METHODS AND ALGORITHMS (4-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Explore complex systems, physicists, engineers, financiers and mathematicians
• Familiarize with complexity and stability theory
• Expose mathematical and computational foundations of numerical approximation
• Become conversant with solution of large scale systems of linear and nonlinear equations

Course Outcomes:
At the end of the course, the student will be able to:
• Be able to understand and implement basic algorithms underpinning computer predictions in modern systems science
• Have a good understanding of the numerical approaches to problem solving
• Use friendly and informal mathematical treatment to represent system approximation
• Adapt to efficient algorithmic approaches for computational approximation
• Analyze and evaluate the accuracy of common numerical methods implemented in MATLab

Course Content:
1. Introduction & Basics: Vectorisation. Polynomial interpolation, precision, floating points, Numerical differentiation and integration
2. Splines: Linear and cubic splines in one dimension. Radial basis function splines in multiple dimensions
5. Simulation: Monte Carlo methods, Existence and uniqueness, Banach fixed point, contraction mapping, application in neural networks
Pre-requisite Courses: UE17CS203 – Introduction to Data Science, UE17MA251 – Linear Algebra.

Text Book(s):

Reference Book(s):

UE17CS325: ARTIFICIAL INTELLIGENCE (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Provide an introduction to Machine Intelligence, Problem Solving, Heuristic Search.
- Provide an introduction to Game Playing.
- Provide an introduction to various knowledge representation techniques, reasoning, and expert systems.
- Provide an introduction to planning and learning in AI.
- Introduce Understanding, Natural Language Processing, and Robotics - Perception and Action.

Course Outcomes:
At the end of the course, the student will be able to:
- Apply various search techniques for solving problems in AI.
- Write programs to play games.
- Apply knowledge representation techniques and build algorithms for reasoning with knowledge.
- Apply planning and learning algorithms to enhance AI problem solving.
- Identify the AI research and problem areas and choose appropriate problem solving methods.

Course Content:
1. **Introduction to Artificial Intelligence:** Origins, Historical Perspective, Successes and Failures. **State Space Search:** AI Problems, Intelligent Agents, State Space Search, Heuristic Search Techniques.
2. **Advanced Search Techniques:** Game Playing - Adversarial Search, Simulated Annealing, Beam Search, Genetic Algorithm, Constraint Satisfaction Problems.
3. **Knowledge Representation using Logic:** Propositional Logic, First Order Predicate Logic, Reasoning, Logic Programming.
5. **Planning:** STRIPS Model, Goal Stack Planning, Hierarchical Planning, Graph Plan.

Introduction to Advanced Topics: Perception and Action, Learning, Understanding and NLP. **Current Applications in AI:** Robotics, Gaming.

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):

UE17CS351: COMPILER DESIGN (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Introduce the major concept areas of Language Translation and Compiler Design.
- Develop a greater understanding of the issues involved in programming language design and implementation.
- Provide practical programming skills necessary for constructing a compiler.
- Develop an awareness of the function and complexity of modern compilers.
- Provide an understanding on the importance and techniques of optimizing a code from a compiler's perspective.

Course Outcomes:
At the end of the course, the student will be able to:
- Use the knowledge of patterns, tokens and regex for solving the problems in the field of Data Mining.
- Analyze and design the semantic behaviour of a compiler.
- Design and develop the behaviour of a construct.
- Design and implement a simple compiler.
- Optimize the performance of a program in terms of speed and space using new code optimization techniques.

Course Content:
1. **Compilers:** The Language Processing System, The Phases of a Compiler, The Grouping of Phases into Passes, Variations in Compiler Models. **Lexical Analysis:** The Role of the Lexical Analyzer, Input Buffering, Specification of Tokens, Recognition of Tokens, Design of a Lexical Analyzer Generator. **Syntax Analysis:** The role of Parser, Syntax Error Handling, Error-Recovery Strategies. **Top - Down Parsing:** Recursive Descent Parser (RDP) with Backtracking.
2. **Syntax Analysis:** **Top - Down Parsing:** LL (1) Parser. **Bottom - Up Parsing:** Shift - Reduce Parsing, LR(0), SLR, Viable Prefixes, CLR, LALR.
3. **Syntax - Directed Translation:** Syntax - Directed Definitions (SDDs), Evaluation Orders for SDDs, Applications of Syntax - Directed Translation (SDT), Syntax - Directed Translation Schemes – Postfix Translation Schemes. **Parser**
Stack Implementation: Parser Stack Implementation of Postfix SDTs, SDTs with Actions Inside Productions, SDTs for L-Attributed Definitions.

4. **Syntax - Directed Translation - Implementing L - Attributed SDDs:** Bottom-Up Parsing. **Intermediate - Code Generation:** Variants of Syntax Trees - Directed Acyclic Graphs for Expressions, Three - Address Code - Addresses and Instructions, Quadruples, Triples, Indirect Triples, SSA Form, Control Flow Graph, **Machine Independent Optimization:** Different Optimizations.

Reference Book(s):

UE17CS352: CLOUD COMPUTING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand the rationale behind the cloud computing revolution
- Introduce various models of cloud computing
- Understand how to design applications on cloud and the role of security
- Understand and design distributed systems for scalability
- Understand and apply various tradeoffs in designing cloud architectures

Course Outcomes:
At the end of the course, the student will be able to:
- Comprehend the technical and business rationale behind cloud computing
- Decide the model of cloud computing to use for solving a particular problem
- Build and deploy applications for the cloud and understand the security implications
- Apply the fundamentals of distributed systems design to cloud computing
- Apply the concepts learnt in solving a real life problem in a group setting

Course Content:
1. **Introduction and Cloud models:** Cloud computing - business perspective, models SOA and REST, IaaS model and case study, PaaS Model
2. **Virtualization Compute** - CPU virtualization – hardware/software - introduction, transparent and para virtualization, Lightweight virtualization – containers - Docker: Microservices,
3. **Storage and Network Virtualization** - CAP Theorem - Distributed storage, Object and Block storage virtualization, Shared storage, Scaling Storage, Multitenancy and SaaS Model, Introduction to network virtualization
4. **Orchestration and DevOps:** Algorithms for allocation of compute, storage. Container Orchestration - kubernetes, Continuous development – DevOps-components and tools

5. **Distributed architectures:** Architectures – peer to peer, master slave, cluster coordination, failure – availability/reliability, Cluster Coordination, Case study: zookeeper, Security in cloud

Pre-requisite Courses: None.

Reference Book(s):

4. Cloud Native DevOps with Kubernetes – Building, Deploying and Scaling Modern Applications in the Cloud, John Arundel and Justin Domingus, O’Reilly, 2019

Course Objectives:
The objective(s) of this course is to,

- Provide an understanding of designing advanced Web Applications using AJAX techniques.
- Provide an introduction to challenges involved in improving performance of rich web sites.
- Learn the basics of Web Services and Reverse AJAX techniques.
- Provide an overview of various Web Frameworks.
- Provide a basic overview of non-functional side of the WWW.

Course Outcomes:
At the end of the course, the student will be able to:

- Design Advanced Web Applications, with techniques like AJAX, Server-Push, etc.
- Use Node.js as a Server-Side Framework to develop web sites that provide fast and reliable content.
- Develop RESTful Web Services and consume them.
- Develop robust web sites that are immune to malicious web attacks.

Course Content:
1. **AJAX:** JS objects, prototype inheritance, Ajax - Hidden Frames Technique, Image-Based AJAX, Dynamic Script Loading, XMLHttpRequest, Cross-Domain Access (CORS), Maintaining History in AJAX Calls, Fetching Binary Data with XHR
2. **AJAX Patterns and Data Formats** – Predictive Fetch, Multi-Stage download, Periodic Refresh and Fallback Patterns, Submission Throttling. Introduction to XML, Parsers, Styling RSS / Atom Feeds, JSON and XML, JSON vs XML.
3. **Reverse AJAX:** COMET, HTTP Streaming and Long Poll, iFrames Technique, Using XMLHttpRequest, HTML5 Server Sent Events, Overview of COMET Frameworks,

Pre-requisite Courses: UE17CS204 – Web Technologies I.

Reference Book(s):
4. Handouts for Web Sockets, HTTP 2.0 protocol, Node.js.

UE17CS354: COMPILER DESIGN LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Deepen the understanding of compiler design
- Develop problem solving ability using programming
- Develop ability to design and analyze a compiler

Course Outcomes:
At the end of the course, the student will be able to:
- Acquire the generic skills to design and implement a compiler
- Analyze practical aspects.

Course Content:
1. Lex to count number of char, words, newlines, and white spaces
2. Lex to remove comment lines
3. Yacc to validate identifiers; Yacc to validate context free grammars
4. Yacc to implement semantic rules to calculate the expression that takes an expression with digits, + and * and computes the value.
5. Yacc to validate Nested IF-ELSE construct. Check whether a given C program is syntactically correct
6. Yacc to generate abstract syntax tree for a given C program.
7. Week 7 – 13 : Compiler Design Mini Project

Pre-requisite Courses: None.
UE17CS355: WEB-TECHNOLOGIES II LABORATORY (0-0-2-0-1)

Course Objectives:
The objective(s) of this course is to,
- Learn and implement asynchronous communication techniques using AJAX.
- Learn and implement AJAX Design Patterns
- Learn and implement Rich Front End using AngularJS
- Learn to implement REST-based web services with XML and JSON.
- Learn to implement web servers using Node.js

Course Outcomes:
At the end of the course, the student will be able to:
- Build Rich and efficient Web Applications using AJAX techniques
- Implement and offer RESTful Web Services with XML and JSON
- Deploy Web Applications on servers with Node.js as the back-end
- Deploy reverse AJAX techniques in Web Applications
- Understand Web Attacks and common defense tactics.

Course Content:
1. Introduction to Lab Environment and Basic Instructions
2. Mini Project Team and Title finalization.
3. Demonstrate the hidden frames AJAX technique (both GET and POST)
4. Demonstrate Video streaming using XMLHttpRequest
5. Demonstrate Multistage download using AJAX
6. Demonstrate Periodic refresh (with exponential back-off feature).
7. Mini project design and implementation
8. Demonstrate use of AJAX with RSS for automatic updates to web sites
9. Demonstrate usage of Reverse AJAX/Comet
10. Implement and host RESTful web services with both JSON and XML.
11. Demonstrate an XSS attack (non-persistent and persistent)
12. Mini Project Implementation
13. Mini Project Evaluation

Pre-requisite Courses: None.

Reference Book(s):
1. Laboratory Manual prepared by Department of Computer Science and Engineering, PES University.

UE17CS331: COMPUTER NETWORK SECURITY (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Provide an overall view of what Computer and Network Security is all about and generate interest in this field to be able to take this as a further specialization area or a career path.
• Introduction of Perimeter Security (Firewall, IDS, IPSEC)
• Understand various access roles of an organization

Course Outcomes:
At the end of the course, the student will be able to:
• Fetch or secure the network user’s information
• Perform various network attacks and their mitigation strategies
• Aware of the responsibilities of security management
• Assess the risks involved in an organization

Course Content:

Pre-requisite Courses: UE17CS301 – Computer Networks.

Reference Book(s):

UE17CS332:
STORAGE AREA NETWORKS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Introduce students to the current storage technologies.
• Equip students with an understanding of SAN technologies in Data Centers, SAN architectures, its advantages and complexities.
Walk through the IO path from an Application to bits and bytes stored in a device with all the related technologies in the path.

Provide hands on exposure to Cloud Storage and how you would write/ read data there.

Exposure to SAN applications like Backup, Security and Management aspects of SAN/ NAS.

Course Outcomes:
At the end of the course, the student will be able to:

- Analyze the logical and physical components of a storage infrastructure.
- Design different types of RAID implementations and enumerate their benefits.
- Analyze and walk through the data path from Application to a Disk
- Contrast SCSI, Fiber Channel and iSCSI protocols.
- Analyze benefits of storage virtualization.
- Write an application which would write/ read data from a Cloud Storage.

Course Content:

3. SAN and NAS - Components and Hardware and Software Architecture: Network Attached Storage - Introduction NAS Hardware and Software Components and Architecture, SAN Hardware and Software Components and Architecture.

Pre-requisite Courses: None.

Reference Book(s):

1. “Storage Networks Explained”, Ulf Troppens, Rainer Erkens and Wolfgang Muller, Wiley India, 2013.

Course Objectives:
The objective(s) of this course is to,
- Expose students to the concepts of n-grams and Language Modelling with n-gram.
- Expose students to the Natural Language Processing pipeline i.e. Morphology, Lexical Analysis, Syntactic Analysis, Semantic Analysis and Discourse.
- Expose students to the Information Extraction problems and end to end Natural Language Generation problems as applications of Natural Language Processing.
- Introduce students to the various Neural Network methods for Natural Language Processing.

Course Outcomes:
At the end of the course, the student will be able to:
- Implement meaningful course or research projects using current Natural Language Processing technology.

Course Content:

3. **Parsing:** Context Free Grammar. **Syntactic Parsing:** Ambiguity Presented By Parse Trees, CKY Parsing, Chart Parsing and Earley Parser. **Partial Parsing:** Chunking. **Statistical Parsing:** Probabilistic Context Free Grammar, Probabilistic CKY Parsing of PCFG, Problems with PCFG, Probabilistic Lexicalized PCFG. **Introduction to Dependency Parsing:** Dependency Relations, Dependency Formalisms, Dependency Tree Banks, Evaluating Parsers.

4. **Semantics - Lexical semantics:** Word Senses and Relations Between Word Senses, WordNet: A Database of Lexical Relations, Word Sense Disambiguation - Overview, Supervised Word Sense Disambiguation, WSD - Dictionary and
Thesaurus Methods, Semi-Supervised WSD, Unsupervised Word Sense Induction. **Word Similarity or Semantic Relatedness Based On Thesaurus:** Resnik Similarity, Lin Similarity, Jiang-Conrath Distance, Extended Gloss Overlap And Extended Lesk Method. **Lexicons For Sentiment and Affect Extraction:** Available Sentiment Lexicons, Using Wordnet Synonyms And Antonyms - Sentiwordnet, Supervised Learning of Word Sentiments, Using Lexicon For Sentiment Recognition, Lexicons For Emotions And Other Affective States. **Representation Of Meaning:** Computational Desiderata for Representations, Meaning Structure of Language, First Order Predicate Calculus, Some Linguistically Relevant Concepts, Related Representational Approaches, Alternative Approaches To Meaning. **Co-Reference Resolution and Discourse:** Lappin and Lease Algorithm, Hobbs Algorithm.

5. **Information Retrieval, Natural Language Generation and Neural Network Methods for Natural Language Processing - Information retrieval:** Information Extraction vs. Retrieval, Information Extraction Sub-Problems, Named Entity Recognition - Practical NER Architectures. **Natural Language Generation:** An Architecture, Question Answering System - IR Based Factoid Question Answering, Knowledge Based Question Answering, IBM’s Watson, Dialogue System And Chatbot - Rule Based And Corpus Based Chatbots. **Vector Semantics:** Words And Vectors, Pointwise Mutual Information, Measuring Similarity, Using Syntax to Define a Word’s Context, Evaluating Vector Models. **Semantics With Dense Vectors:** Dense Vectors via SVD, Distributional Hypothesis, Embedding from Predictions - Skip Gram And CBOW, Properties Of Embedding, Pre-Trained Word Representations - Word2vec And Glove, Limitation Of Distributional Methods. **Neural Network Methods For Natural Language Processing:** CNN and RNN as Feature Extractors, Modeling With Recurrent Neural Network - Sentiment Classification, Part of Speech Tagging, Conditioned Generation By RNN - Encoder-Decoder, Seq2seq Models, Seq2seq Chatbots.

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):

Course Objectives:
The objective(s) of this course is to,
- Introduce the factors influencing a program’s performance.
- Introduce concepts from processor architecture, compiler optimizations and software approaches.
- Introduce various parallel architectures like multi-core and GPUs.
Course Outcomes:
At the end of the course, the student will be able to:
- Analyze a given program and measure its performance based on various factors.
- Write and debug performance efficient code.
- Write task and data parallel programs.

Course Content:
1. **Understanding Performance, Factors Influencing Performance:** Modern Architectures – Instruction Level Parallelism, Multi-Core Architectures, Hyper Threading, Massively Parallel GPU Architectures. **Measuring Performance:** Tools to Measure Performance of Programs, Methodology of Measuring and Debugging Performance.
2. **Compiler Optimizations to Achieve Performance:** Understanding Program Structures, Effect on Compilers, Loop Optimizations – Unrolling, Fusion, Transformations, Memory Hierarchy and Effect on Performance, Cache Organizations, Writing Cache Friendly Code.
3. **Threads:** Creation/ Deletion/ Scheduling of Threads, Synchronization of Threads, Deadlocks. **Parallel Programming Models:** Task Level and Data Level Parallelism.
4. **Introduction to OpenMP:** For Extracting Parallelism on Modern Processors.
5. **Introduction to OpenCL/ CUDA:** For Extracting Parallelism on Modern GPUs.

Pre-requisite Courses: UE17CS253 – Microprocessor and Computer Architecture.

Reference Book(s):

UE17CS335: PARALLEL COMPUTING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand various models of parallel computations such as threads, OpenMP, MPI, clusters.
- Develop programs using parallel languages and appreciate parallel compilers using parallel architectures.

Course Outcomes:
At the end of the course, the student will be able to:
- Design efficient parallel algorithms and applications.
• Analyze the effectiveness of any parallel program.

Course Content:
1. **Parallel Programming Models**: Introduction to Analytical Models and Message Passing Communications (MPI), Review of Shared Memory Programming Models (OpenMP/ CUDA).
2. **Parallel Algorithms**: Sequences and String, Scan (Prefix Sums), List Ranking, Sorting, Merging, Medians, Searching, String Matching.
5. **Constructs in Parallel Languages**: Haskell, Scala, GO Lang, C++ 11 and Java 1.8 Features, Concurrent Data Structures - Java 1.8 Concurrent Collections.

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Reference Book(s):

UE17CS336: GENERIC PROGRAMMING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand the rationale behind generic programming.
- Understand compile time checks.
- Gain insights into the concept of meta programming.

Course Outcomes:
At the end of the course, the student will be able to:
- Solve programming problems and improve programs using Generic Programming.
- Evaluate Generic Programming methods/ approaches and understand their pros and cons.
Course Content:
1. **Template Functions:** Definition, Instantiation - Implicit and Explicit, Specialization, Type and Non-Type Template Parameter.
2. **Template Class:** Instantiation, Templates and Static Members, Templates and Inheritance, Templates and Composition, Templates and Friends, Template Member Functions, Dependent Type, Default Template Parameter, Nested Templates Traits and Policies, STL Philosophy, Efficiency of Algorithms, Separation of Behaviour from Container Classes, Functor and Iterator, Iterator Hierarchy, Adaptors, Examples of Containers and Algorithms.
4. **Building Blocks:** Values, Functions, Branching, Recursion, Compile-Time "If" Conventions for "Structured" Template Meta Programming.
5. **Generics in Java:** Generic Methods, Constructors, Type Inference, Bounded Type Parameters, Subtyping, Wildcards, Type Erasure, Overview of Generic Collection Classes, Generics in C#, Generic Constraints, Generics and Casting, Inheritance and Generics, Generic Methods, Generic Delegates, Generics and Reflection.

Pre-requisite Courses: None.

Reference Book(s):
6. MSDN for C# generics.

UE17CS337:
DRONE COMPUTING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- To enable the students to have hands-on experience with drones/quadcopters.
- To understand the basic principles of flying.
- To write program to fly drones.
- To use mission planners for accomplishing GPS related tasks.
- To enrich the drone computing applications to serve the society.

Course Outcomes:
At the end of the course, the student will be able to:
- Fly drones/ quadcopter both using RF controller and semi-autonomously
- Write programs to guide the paths of drones
- Use GPS coordinates to locate positions while flying
- Apply the fundaments of drone computing for their projects
- Innovate workable ideas to address the challenging problems in the society

Course Content:
1. **Building a Simple Drone:** Introduction to Drones, Types of Drones, Configuration of Flight Controller, Configuration of Receiver Transmitter Control, Assembling Drone Components, Experiments with Simple Flight Paths.

5. **Tracking with Camera:** Introduction to Tracking with Camera, Object Recognition, Obstacle Avoidance, Experiments for Tracking Objects, Analyzing Follow-Up Accuracies and Flight Stability with Experiments.

Pre-requisite Courses: None.

Reference Book(s):

Course Objectives:

The objective(s) of this course is to,

- To impart hands-on knowledge on Advanced Machine Learning Topics.
- Introduce students to programming with TensorFlow and Keras tools.
- Provide in-depth coverage of Support Vector Machines.
- Introduce students to Deep Learning techniques – CNN and RNN.
- Introduce students to Reinforcement Learning and Generative Adversarial Networks.

Course Outcomes:

At the end of the course, the student will be able to:

- Implement Machine Learning techniques with TensorFlow and Keras.
- Solve time-series related problems with RNN.
- Classify real-world data using Support Vector Machines.
- Classify images using CNN.
- Generate data in the form of images using GAN.
- Develop simple game engines using Reinforcement Learning.

Course Content:

using TensorBoard. **Keras**: Installation, Loading Data, Defining and Compiling Models, Fitting and Evaluating Models, Simple Neural Networks’ Implementation, Fine-Tuning Hyper parameters. **Reinforcement Learning**: Learning to Optimize Rewards, Credit Assignment Problem, Temporal Difference Learning and Q-Learning. **Case Study**: Learning to play a simple game using deep Q-learning - implementation.

2. **Support Vector Machines**: A Very Brief Recap of the Support Vector Machine (SVM) Problem, Soft-Margin SVM (Noisy Data), Kernel Functions – Linear, Polynomial, Gaussian, Other Types, the SMO Algorithm, Multi-Class SVMs, Text-Classification, Building Applications

3. **Recurrent Neural Networks (RNN) and Unsupervised Feature Learning**: Recurrent Neurons, Memory Cells, Static and Dynamic Unrolling through Time, Variable-Length Input-Output Sequences, Training RNNs – Sequence Classifier, Predicting Time Series, Deep RNNs, LSTM Cell and GRU Cell, Text Classification with RNN, RNN Vs Naïve Bayes, Unsupervised Feature Learning - Autoencoders and Variations.

5. **Paper Review and Implementation**: Selection of two state-of-the-art papers (recent) on deep learning, in depth study of the papers in class and their implementation.

NOTE: Unit 5 will be part of End-semester Assessment. Questions will be asked on the chosen papers.

Pre-requisite Courses: UE16CS353 – Machine Learning.

Reference Book(s):

UE17CS341:
SOFTWARE DEFINED NETWORKS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand the rationale behind evolution of Software Defined Network technology.
- Understand SDN based managed network services through abstraction of higher-level functionality.
- Understand the architecture of SDN traffic through Control and Data planes.

Course Outcomes:
At the end of the course, the student will be able to:
• Implement SDN approach to design, engineer and manage the networks.
• Configure Network services using SDN with ease, efficiently and remotely monitor QoS.

Course Content:
2. Control and Data Plane Separation, Control Plane, Network Virtualization, Data Plane.
3. Programming SDNs, Openflow.
4. Verification and Debugging, Use Cases and Looking Forward.
5. Hands-on using simulator Mininet.

Pre-requisite Courses: UE17CS301 – Computer Networks.

Reference Book(s):

UE17CS342:
KNOWLEDGE MANAGEMENT (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Understand and appreciate the rationale and theory of Knowledge Management.
• Learn various tools for Knowledge Management.
• Understand the significance of Knowledge Management.
• Learn different ways of knowledge creation and transfer.
• Understand the role and implications of technology in the field of Knowledge Management.

Course Outcomes:
At the end of the course, the student will be able to:
• Apply Knowledge Management paradigms in applications like Semantic Web.
• Select and use various tools for effective Knowledge Management.

Course Content:
1. **The Basics:** Working Smarter, Knowledge Management (KM) Myths and Lifecycle, Implications of KM. **Understanding Knowledge:** Definitions, Cognition and KM, Data, Information and Knowledge, Types of Knowledge, Expert Knowledge, Human Thinking and Learning, Implications for KM. **Knowledge Management Systems Lifecycle:** Challenges, Conventional versus KM System Lifecycle, Implications for KM. **KM Strategy:** Economy of Plan, Economy of Change, Economy of Control.
2. **Knowledge Creation and Capture:** Knowledge Creation and Knowledge Architecture, Nonaka’s Model, Knowledge Architecture, Implications, Capturing Tacit Knowledge, Knowledge Capture, Evaluating the Expert, Developing a Relationship with Experts, Fuzzy Reasoning and Quality of Knowledge, Interview as a Tool, Guide to a Successful Interview, Rapid Prototyping, Implications.
3. **Design of KM Systems:** Economy of Scope, Economy of Effort, Economy in

4. **Knowledge Transfer in E-World:** The E-World, E-Business, Implications, KM System Tools and Portals – Learning from Data, Data Visualization, Neural Networks as a Learning Model, Association Rules, Classification Types, Implications, Data Mining - Knowing the Unknown, Data Mining and Business Intelligence, Business and Technical Drivers, Data Mining Business Cycle and Data Management, Data Mining in Practice, Role of DM in Customer Relationship, Implications. **Knowledge Management Tools and Portals:** Portals - The Basics, Business Challenge, Knowledge Portal.

5. **Technologies, Implications, Ethical, Legal and Managerial Issues:** Knowledge Owners, Legal Issues, Ethical Factor, Improving the Climate, Implications.

Pre-requisite Courses: None.

Reference Book(s):

UE17CS343:
SYSTEM MODELING AND SIMULATION (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- To provide a background to students on the principles of modelling and simulation and expose them to different types of models.
- To train students on the techniques of how to model a scenario using discrete event system models. Expose students to typical applications such as queuing systems and inventory systems.
- To train students to conduct end-to-end simulation experiments and assess the fitness of simulation.
- To expose students to continuous systems and application of continuous simulation to real life systems.
- To expose students to agent-based modelling.

Course Outcomes:
At the end of the course, the student will be able to:
- Model a given scenario/ problem and generate inputs to simulate the same and derive simulation table that includes inputs and outputs.
- Apply simulation techniques to typical discrete event systems such as queuing systems, inventory systems and reliability of machines.
- Generate inputs for simulation using understanding of statistical distributions.
- Validate the input models and assess the simulation output relative to real life data.
- Model continuous systems using numeric methods.
- Apply agent-based modelling techniques.

Course Content:

2. **Building Discrete Event Simulation Models:** Managing Event Lists, Queue Disciplines, Priorities, Application to Simulation of Computer Subsystems and Concurrent Processes.

3. **Design of Simulation Experiments:** Generation of Random Numbers, Validation of Random Numbers, Generating Variates, Input Data Analysis to Determine Distributions.

4. **Validation of Simulation and Output Analysis:** Verification and Validation of Simulation Models, Analysis of Simulation Output, Tests of Significance and Design of Experiments, Variance Reduction Techniques.

Pre-requisite Courses: UE17CS203 – Introduction to Data Science

Reference Book(s):

Course Objectives:
The objective(s) of this course is to,

- Challenges associated with Network Management (NM).
- Standards related to Network Management.
- Applications related to NM like FCAPS.
- Building of a NM interaction using SNMP.
- Evolving technologies with NM.

Course Outcomes:
At the end of the course, the student will be able to:

- Analyze the challenges associated with Network Management.
• Contrast the different NM architectures and their salient points
• Demonstrate applications associated with NM using some of the Open source tools
• Create a MIB, Manager and Agent using SNMP and demonstrate the basics of NM

Course Content:

1. **Introduction to Network Management**: Introduction, What is Network Management, Element and Network Management Systems, Challenges associated with Managing Networks, Variety and Multi-Vendor Environments, Scale and Complexity, Types of Networks, Network Topologies, Functions and Types, Internet And Network Management; Administrative Entities, Their Autonomy and Responsibilities in Terms of Policies, Data Centre Networks. NM - The Big Picture and the Activities/IT Groups which Support them, NOCs, Network Devices and Services which Need to be Managed, Benefits of Automation, Maturity of Network Management, What are the Expectations from an NMS; In an Element based NMS, Who is Best Suited for Providing a Network Management System to Manage the Components? What should a typical NM system provide, Architectural Approaches of NMS.

Pre-requisite Courses: UE17CS301 – Computer Networks.

Reference Book(s):
8. Various Articles from Internet, Published Papers.

UE17CS345: DIGITAL IMAGE PROCESSING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand the image fundamentals (acquisition, storage and viewing)
- Gain an insight to the mathematical transforms necessary for processing of grayscale and binary images
- Assess the quality of an image and study the application of enhancement techniques in the spatial and frequency domains
- Understand some types of noise that affects images and study techniques for denoising and restoration
- Understand some of the techniques used for processing of 3D/colour images

Course Outcomes:
At the end of the course, the student will be able to:
- Understand image formation and the role human visual system plays in perception of gray and colour image data
- Apply image processing techniques in both the spatial and frequency (Fourier) domains
- Assess the quality of an image and apply appropriate enhancement techniques
- Design and evaluate methodologies for image segmentation
- Conduct an independent study and analysis of feature extraction and image classification techniques
- Design and/or apply algorithms to solve problems pertaining to image processing and analysis

Course Content:

3. **Morphological Image Processing and Segmentation:** Preliminaries, Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms. **Image Segmentation:** Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region-Based Segmentation.

5. **Feature extraction:** Scale Image Feature Transform, **Image Pattern Classification:** Patterns and Pattern Classes, Pattern Classification by prototype matching, Bayes Classifier for Gaussian Pattern Classes, Neural Networks and Deep Learning, Deep Convolution Neural Networks.

Pre-requisite Courses: UE17CS251 – Design and Analysis of Algorithms.

Text Book:

Reference Book(s):

UE17CS346:
ADVANCED COMPUTER NETWORKS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Prepare students to design and manage various aspects of organizational network.
-Expose students towards real time network design.
- Design network that meet customer’s business and technical goals.
- Provide ability to analyse the existing network design.
- Provide hands-on experience for network design with the help of various simulators.
Course Outcomes:
At the end of the course, the student will be able to:
- Design network on predefined network requirements.
- Analyse protocol behaviour, internetworking technologies and traffic flow.
- Select most appropriate routing protocols and addressing scheme for given network design.
- Design campus network and use network management strategies in their design.
- Execute SDLC model for network design.

Course Content:
2. **Characterizing the Existing Internetwork:** Characterizing the Network Infrastructure, Checking the Health of the Existing Internetwork. Characterizing Network Traffic: Characterizing Traffic Flow, Characterizing Traffic Load, Characterizing Traffic Behaviour, Characterizing Quality of Service Requirements.

Pre-requisite Courses: UE17CS301 – Computer Networks.

Reference Book(s):

Course Objectives:
The objective(s) of this course is to,
- Understand the motivation for reconfigurable computing.
- Introduction to internal structure of reconfigurable devices.
- Understand design of accelerator logic.
Learn industry standard development tools.

Course Outcomes:
At the end of the course, the student will be able to:
- Comprehend the rationale behind reconfigurable computing.
- Build computation structures to accelerate processing.
- Use industry standard tools to implement accelerator logic.
- Design and implement accelerator logic to speed up an application.

Course Content:
1. **Introduction:** Business and Technical Motivations (such as Moore’s law challenges and big data computation requirements) for Reconfigurable Computing.
2. **FPGA Architecture:** Architecture and Organization (Logic Blocks, Interconnect, Memory and Arithmetic Blocks) of Modern FPGA (Field Programmable Gate Array) Reconfigurable Devices.
3. **Accelerator Logic:** Design of Logic Structures, Memory Structures and State Machines and Their Implementation using Structural Verilog HDL.
5. **Applications:** Hands on Programming of Basic Computation Structures and At Least One Application That Performs Much Faster Than Software.

Pre-requisite Courses: None.

Reference Book(s):

UE16CS401:
OBJECT ORIENTED MODELING AND DESIGN (4-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Introduce students to Object Oriented Programming, Object Oriented Analysis and Modeling using the Unified Modeling Language (UML).
- Familiarize them with the models used in UML, including static as well as dynamic (behavioural) models.
- Make students appreciate the importance of system architecture and system design in product development.
- Introduce students to important design principles and patterns including GRASP and SOLID.

Course Outcomes:
At the end of the course, the student will be able to:
- Use the concepts of classes and objects in Object Oriented Programming. Use UML to model a complex system by defining actors and use cases.
- Construct Class Models and analyze the dynamics of a system using Activity, Sequence, State and Process models.
- Depict the architecture of a software system by using component and deployment models and design a database based on a class model.
• Use GRASP and SOLID principles in the design of software.
• Apply software design patterns in a variety of situations.

Course Content:
1. **Introduction, Use Cases and Class Models:** Introduction to Object Oriented Programming, Introduction to Modeling, Introduction to UML, Use Case Models, Application to Case Study
2. **Class Models and Dynamic Models:** Class Modeling, Object Constraint Language, Advanced Class Modeling, Activity Models, Business Process Models, Sequence Models, ATM Case Study: Application Class / Interaction Models, State Models, Advanced State Models, Relationship between Class and State Models, Application to Case Study.
4. **Object Oriented Design Principles:** GRASP (General Responsibility Assignment Software Patterns) and SOLID (Single Responsibility, Open-Closed, Liskov Substitution, Interface Segregation, Dependency Inversion).
5. **OO Design Patterns:** What Design Patterns Are, How Design Patterns Solve Problems, How to Select a Design Pattern, How to Implement a Design Pattern, Introduction to Widely Used Design Patterns including Creational, Structural, and Behavioural Patterns.

Pre-requisite Courses: None.

Reference Book(s):

UE16CS402:
SOFTWARE ENGINEERING (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Ensure the relevance and need of an engineering approach to software development.
• Learn Software Engineering concepts.
• Expose students to the tools available as part of the Software Development and Product Development Life Cycle.
• Enable the students to practice the principles of Software Product Development.

Course Outcomes:
At the end of the course, the student will be able to:
• Relate to the challenges of Software Development and relate to Software Engineering as a methodical approach for development.
• Use Software Development Life Cycles with an understanding of when and where to use.
Work through and produce different artifacts expected at each phase of the lifecycle.
Work on a project plan, track and manage projects.
Appreciate the importance and usage of quality and metrics in Software Development.

Course Content:

Pre-requisite Courses: None.

Reference Book(s):
4. IEEE SWEBOK and Other Sources from Internet.
Course Objectives:
The objective(s) of this course is to,

- Provide an understanding of designing advanced Web Applications using AJAX techniques.
- Provide an introduction to challenges involved in improving performance of rich web sites.
- Learn the basics of Web Services and Reverse AJAX techniques.
- Provide an overview of various Web Frameworks.
- Provide a basic overview of non-functional side of the WWW.

Course Outcomes:
At the end of the course, the student will be able to:

- Design Advanced Web Applications, with techniques like AJAX, Server-Push, etc.
- Use Node.js as a Server-Side Framework to develop web sites that provide fast and reliable content.
- Develop RESTful Web Services and consume them.
- Develop robust web sites that are immune to malicious web attacks.

Course Content:

1. **AJAX**: JS objects, prototype inheritance, Ajax - Hidden Frames Technique, Image-Based AJAX, Dynamic Script Loading, XMLHttpRequest, Cross-Domain Access (CORS), Maintaining History in AJAX Calls, and Fetching Binary Data with XHR.

2. **AJAX Patterns and Data Formats** – Predictive Fetch, Multi-Stage download, Periodic Refresh and Fallback Patterns, Submission Throttling. Introduction to XML, Parsers, Styling RSS / Atom Feeds, JSON and XML, JSON vs XML.

Pre-requisite Courses: UE16CS204 – Web Technologies I.

Reference Book(s):

4. Handouts for Web Sockets, HTTP 2.0 protocol, Node.js.
Course Objectives:
The objective(s) of this course is to,
- To learn the strategic importance of Enterprise Resource Planning systems in industry
- To learn the basics of ERP, the modules of ERP
- To learn the key selection criteria and implementation issues & risks of ERP
- To be aware of ERP related technologies
- To be aware of commercial ERP software.

Course Outcomes:
At the end of the course, the student will be able to:
- Identify typical functionality of ERP sub-systems.
- Apply criteria to select ERP Package
- Apply criteria to select ERP Consulting Partner
- Systematically develop plans for an ERP Implementation project and
- Identify critical success factors and associated risks.

Course Content:

5. **ERP and Related Technologies:** Introduction, ERP on Cloud, Supply Chain Management (SCM), Customer Relationship Management (CRM), Product Life Cycle Management (PLM), Data Warehousing, Business Intelligence (DW-BI). **Introduction to Commercial ERP Software:** Introduction, Indian Market, SAP, Oracle, PeopleSoft, JD Edwards, MS Dynamics. Implementations in India; Articles and Cases. Introduction to ERP for SME’s.

Pre-requisite Courses: None.

Reference Book(s):

UE16CS412: ALGORITHMS FOR INFORMATION RETRIEVAL (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Understand the architecture, models and algorithms used in Information Retrieval.
- Understand the basic principles and implementation of Indexing and Search.
- Understand how web search works.
- Understand the use of machine learning in Information Retrieval.
- Become familiar with applications and latest trends in Information Retrieval.

Course Outcomes:
At the end of the course, the student will be able to:
- Implement an efficient index for a document collection.
- Perform searches on a document collection, rank and evaluate results.
- Implement components of a web search system.
- Apply Machine Learning techniques in Information Retrieval Systems.
- Describe modern applications and research trends in Information Retrieval.

Course Content:
2. **Indexing and Vector Space Model:** Algorithms for Indexing and Index Compression, Vector Space Model for Scoring, tf-idf and Variants, Efficient Scoring and Ranking.
3. **Evaluation of IR / Other IR Models:** Performance Measurement, Relevance
Feedback, Query Expansion, Other IR Models.

5. **Applications of IR:** Text Classification and Clustering, Snippet Generation, Summarization, Topic Detection and Tracking, Question Answering, Personalization.

Pre-requisite Courses: UE16CS251 – Design and Analysis of Algorithms.

Reference Book(s):

UE16CS413:
COMPUTER VISION (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- To create an awareness of the imaging fundamentals in terms of acquisition, storage and display.
- To gain an insight into the mathematical transforms necessary for binary and gray scale images.
- To study the quality of the image and the enhancement of images in spatial and frequency domains.
- To design and evaluate the methods of mathematical morphology and image segmentation.
- To translate the techniques of gray scale images to 3D/color images.

Course Outcomes:
At the end of the course, the student will be able to:
- Identify typical defects in an image and assess a suitable technique for processing the image to mitigate/ remove the defect and enhance the image.
- Design methods to automatically extract regions of interest from each other and the background either in binary, grayscale or color images.
- Extract the gist of any method in literature for processing of images for a particular application and be able to explain this clearly, extending their learning of concepts such as histogram equalization to local/ adaptive histogram equalization and enhancement techniques in the spatial and frequency domains to block processing of images - realized through seminars in class.
• Assess hardware available for acquisition and viewing of images for advantages and limitations and be able to identify a suitable imaging modality for a given application.
• Implement basic techniques using open source tools and take up a problem, conceptualize the solutions and implement in a programming language of their choice - realized through a hands-on workshop, assignment and class project.
• Application of spatial and frequency domain processing for computer vision.

Course Content:
4. **Stereo and 3D Reconstruction**: Stereo - An Introduction, Epipolar Geometry, Sparse and Dense Correspondence, Local Methods, Feature Tracking and Optical Flow.
5. **Image Indexing and Recognition**: Image indexing, image search and retrieval, Object Detection, Face Recognition, Category Recognition, Context and Scene Understanding, Video Summarization.

Pre-requisite Courses: None.

Reference Book(s):

UE16CS414:
Topics in Deep Learning (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• To impart hands-on knowledge on Advanced Machine Learning Topics.
• Introduce students to programming with TensorFlow and Keras tools.
• Provide in-depth coverage of Support Vector Machines.
• Introduce students to Deep Learning techniques – CNN and RNN.
• Introduce students to Reinforcement Learning and Generative Adversarial Networks.

Course Outcomes:
At the end of the course, the student will be able to:
• Implement Machine Learning techniques with TensorFlow and Keras.
• Solve time-series related problems with RNN.
• Classify real-world data using Support Vector Machines.
• Classify images using CNN.
• Generate data in the form of images using GAN.
• Develop simple game engines using Reinforcement Learning.

Course Content:

7. **Support Vector Machines**: A Very Brief Recap of the Support Vector Machine (SVM) Problem, Soft-Margin SVM (Noisy Data), Kernel Functions – Linear, Polynomial, Gaussian, Other Types, the SMO Algorithm, Multi-Class SVMs, Text-Classification, Building Applications

8. **Recurrent Neural Networks (RNN) and Unsupervised Feature Learning**: Recurrent Neurons, Memory Cells, Static and Dynamic Unrolling through Time, Variable-Length Input-Output Sequences, Training RNNs – Sequence Classifier, Predicting Time Series, Deep RNNs, LSTM Cell and GRU Cell, Text Classification with RNN, RNN Vs Naïve Bayes, Unsupervised Feature Learning – Autoencoders and Variations.

10. **Paper Review and Implementation**: Selection of two state-of-the-art papers (recent) on deep learning, in depth study of the papers in class and their implementation.

NOTE: Unit 5 will be part of End-semester Assessment. Questions will be asked on the chosen papers.

Pre-requisite Courses: UE16CS353 – Machine Learning.

Reference Book(s):

UE16CS415:
WIRELESS NETWORK COMMUNICATIONS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- To provide an overview of Wireless Communication networks area and its applications in communication engineering.
- To appreciate the contribution of Wireless Communication networks to overall technological growth.
- To understand the various terminology, principles, devices, schemes, concepts, algorithms and different methodologies used in Wireless Communication Networks.

Course Outcomes:
At the end of the course, the student will be able to:
- Understand the cellular system design and technical challenges.
- Analyze the Mobile radio propagation, fading, diversity concepts and the channel modelling.
- Analyze the design parameters, link design, smart antenna, beam forming and MIMO systems.
- Analyze Multiuser Systems, CDMA, WCDMA network planning and OFDM Concepts.
- Summarize the principles and applications of wireless systems and standards

Course Content:
1. Overview of Wireless communication: Cellular Phone Standards, Cellular Evaluation, Wireless Local Loop (WLL) and LMDS, Wireless Local Area Networks (WLANs), Bluetooth and Personal Area Networks (PANs), Overview of WLAN standards (802.1g/n/ac/ad) and channel management. Handover in WLAN network.
5. ISI Countermeasures: Multicarrier Systems and OFDM, Multiuser and Cellular Systems.

Pre-requisite Courses: UE16CS301 – Computer Networks.

Reference Book(s):
Course Objectives:
The objective(s) of this course is to,
- Learn the challenges and pitfalls of Software Development and Secure Programming, across the Web, Mobile Devices and IoT.
- Learn the possible attacks and available remedies.
- Learn about security design and testing best practices.

Course Outcomes:
At the end of the course, the student will be able to:
- Understand the security limitations of commonly used Operating Systems, Browsers and Mobile Operating Systems.
- Understand the security limitations of popular programming languages.
- Understand the common security pitfalls in various application development approaches, platforms and how to avoid them.
- Learn how to use some common security testing strategies and Penetration Testing.

Course Content:
1. Introduction: Software Threats and Vulnerabilities, OWASP Top 10, SANS Top 25, CVE, etc. Various Type of Attacks like Brute-Force Attacks, DDOS, Phishing, Credentials Misuse, Malware, etc. Significance/ Importance of Secure Coding, Secure Coding Terminology, Secure Coding Principles, Threat Modeling, Secure Coding Resources (Both online and offline).
 2.2. Vulnerabilities and Exploits like Buffer Overflows, SQL Injection, Insecure Direct Object References, Security Misconfiguration, Sensitive Data Exposure

Pre-requisite Courses: UE16CS331 - Computer Network Security.

Reference Book(s):

UE16CS422:
WEB SERVICES (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
● To introduce Service Oriented Architecture.
● To provide a comprehensive introduction to Web Services.
● To impart techniques on building RESTful and SOAP-based Services.
● To educate the student on the security aspects of Web Services.

Course Outcomes:
At the end of the course, the student will be able to:
● Build RESTful Web Services
● Build SOAP based Web Services
● Design RESTful APIs
● Demonstrate basic security mechanisms in Web Services.
● Invoke RESTful and SOAP-based Web Services.
Course Content:
1. **Introduction**: Web Services and SOA, Overview of HTTP, REST.
2. **RESTful Web Services - The Service Side**: RESTful Service as an HTTP Servlet, as a JAX-RS Resource, Generating XML and JSON Responses, Restlet Resources, WebService Provider.
3. **RESTful Web Services - The Client Side**: Clients against Amazon E-Commerce Service, RESTful Clients and WADL Documents, JAX-RS Client API, JSON for Javascript Clients, JSONP and Web Services, jQuery, AJAX Polling.
4. **SOAP-Based Web Services**: SOAP-Based Services, Java Clients, WSDL Service Contract, SOAP-Based Clients against Amazon E-Commerce Services, Asynchronous Clients.

Pre-requisite Courses: UE16CS204 – Web Technologies I.

Reference Book(s):

UE16CS423: ALGORITHMS FOR INTELLIGENT WEB (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- To get an understanding of search algorithms.
- To learn recommendation algorithms and their working.
- To get an insight into clustering algorithms.
- To introduce classification algorithms and their use in today’s applications.
- To get an idea of different web applications.

Course Outcomes:
At the end of the course, the student will be able to:
- Analyze different search algorithms and make comparison
- Suggest different recommendation algorithms
- Implement various clustering algorithms
- Analyse different intelligent applications
- Effectively use classification algorithms

Course Content:
2. **Recommendation Algorithms**: Distance and Similarity, Distance and Similarity, Recommendation algorithms, Types of Recommendations, Workings of Sample Systems, Workings of Sample Systems, Data Normalization and Correlation Coefficients.
4. **Classification Algorithms**: Classification Theory, Category Lists, Taxonomy, Folksonomy and Ontology, Classification by Tagging, Automatic Classification and Routing, Types of Classification Algorithms, Hybrid Classifiers, Sample Applications, Practical Issues in Classification.

Pre-requisite Courses: UE16CS251 – Design and Analysis of Algorithms.

Reference Book(s):

UE16CS424: SOCIAL NETWORK ANALYTICS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Provide students background on concept of various types and kinds of Social Networks, their structural properties and related measures
- Train students to observe and measure unique aspects of network formation and growth of social networks
- Enable students to understand social phenomena such as diffusion and cascades.
- Expose students to Strategic Networks, the incentive model for connection formation
- Expose students to Game theory and Games on Networks, concepts related to strategies and optimality

Course Outcomes:
At the end of the course, the student will be able to:
- Model a given scenario/problem as a network, evaluate the type and kind of such a network and measure structural properties of that network.
- Apply algorithms to detect communities and decipher phenomena peculiar to social networks such as small worlds and power laws
- Model a social process such as spread of information and diseases using diffusion model.
- Model and analyze strategic networks and measure network properties.
- Apply Social Network Analysis concepts to variety of real world scenarios by modelling them as games.

Course Content:
1. **Background and Fundamentals of network analysis**: Introduction to Networks and Examples, Ego-centric Networks, Exchange Networks, Graph-Theory, Directions and Weights, Adjacency Matrices, homophily, Tie-strengths and structural holes. Representing and Measuring Networks: Degree distribution, diameters, path-lengths, centrality, closures, clustering
2. **Models of Network formation**: Random Networks, Small World, Growing Random Networks, Growth Models, Distribution of expected degrees, Preferential attachment, Fat tails, Power Laws, Fat Tails, Scale-free networks, Affiliation
Networks, Cliques and Cores, Cohesion, Communities and Community Detection Algorithms

3. **Implications of Network Structure:** Diffusion through Networks: The Bass Model, Diffusion in Random networks, Giant Components, Models to study disease and information spreads, Cascades and Contagions, Assortativity, Percolation and Robustness of Networks, Effects of communities and centralities on diffusion

5. **Games on Networks:** Introduction to Games, Reasoning about behavior in a Game, Prisoner’s Dilemma, Best response and Dominant Strategies, Nash Equilibrium, Multiple equilibriums: Co-ordination Games, Hawk-Dove Game, Mixed Strategies, Pareto Optimality and Social Optimality.

Pre-requisite Courses: UE16MA251 -Linear Algebra, UE16CS202 – Data Structures

Reference Book(s):

UE16CS425:
COMPUTER SYSTEMS PERFORMANCE ANALYSIS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Provide students background on the art of system performance evaluation
- Train students to observe workload, workloads selection
- Enable students to understand capacity planning and benchmarking
- Enable students to apply experimental analysis and design techniques
- Enable students to understand different queuing models and apply them.

Course Outcomes:
At the end of the course, the student will be able to:
- Model a given scenario for analysing the performance evaluation of the system
- Apply workload and workload selection criteria for different scenarios
- Apply experimental design technique to analyse / predict performance.
- Model and analyze capacity planning and benchmarking
- Apply queuing models for different scenarios for predicting the performance

Course Content:

4. **Queuing Models**: Introduction - Queuing Notation, Rules for all Queues, Little's Law, Types of Stochastic Process. Analysis of Single Queue - Birth-Death Processes, M/M/1 Queue, M/M/m Queue, M/M/m/B Queue with Finite Buffers, Results for Other M/M/1 Queuing Systems, Queuing Networks, Open and Closed Queuing Networks, Product Form Networks, Queuing Network Models for Computer Systems, Operational Laws, Utilization Law, Forced Flow Law, Little's Law, General Response Time Law, Interactive Response Time law and Bottleneck Analysis.

5. **Simulation, Capacity Planning and Benchmarking, Presentation**: Introduction to Simulation, Analysis of Simulation Results, Steps in Capacity Planning and Management, Problems in Capacity Planning, Common Mistakes in Benchmarking, Benchmarking Games. The art of data presentation, Guidelines for preparing Good Charts, Common Mistakes, Decision-makers games, Ratio Game, Strategies for winning a ratio game.

Pre-requisite Courses: UE16CS253 – Microprocessor and Computer Architecture

Text book:

UE16CS426:
DESIGN PATTERNS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
- Impart design principles beyond coding.
- Inculcate good habits in design.
- Make the participants appreciate what to do and what not to do.
- Compare alternate design solutions.
- Appreciate the intricacies of design.

Course Outcomes:
At the end of the course, the student will be able to:
- Separate the interface from implementation in any complex problem.
• Identify the contexts where design patterns can be applied.
• Select where idioms can be applied as opposed to design patterns.
• Identify where not to apply design patterns.
• Reliably refactor a large piece of software.

Course Content:
2. **Idioms:** Handle Body Idiom (PIMPL), Reference Counting, Named Constructor Idiom, Telescoping Constructor, Bean Pattern for Construction, Destruction Idiom.
3. **Design Patterns:** GOF Patterns, Constructional Patterns, Structural Patterns, Behavioural Patterns.
4. **Patterns:** Beyond GOF, Persistence, Multi-threading.
5. **Introduction to Anti-patterns and Refactoring.**

Pre-requisite Courses: UE16CS251 – Design and Analysis of Algorithms.

Reference Book(s):
2. “Design Patterns: Elements of Reusable Object-Oriented Software”, Gamma et al, Addison Wesley, 1994

UE16CS427: AUTONOMOUS MOBILE ROBOTICS (4-0-0-0-4)

Course Objectives:
The objective(s) of this course is to,
• Enable the students to have hands-on experience with mobile robots
• Understand the physics of motion
• Write program to operate mobile robots
• Use mobile robots for accomplishing high level tasks
• Enrich the mobile robotics applications to serve the society

Course Outcomes:
At the end of the course, the student will be able to:
• Operate mobile robots autonomously or/and semi-autonomously
• Write programs to guide the paths of mobile robots
• Perform assigned tasks using mobile robots
• Apply the fundaments of mobile robotics for their projects
• Innovate workable ideas to address the challenging problems in the society.

Course Content:
1. **Introduction and Locomotion:** Introduction to mobile robots (MR), Applications, Key issues in locomotion, Legged mobile robots, Wheeled mobile robots
2. **Kinematics:** MR kinematic models, MR constraints, MR maneuverability, MR workspace, MR control basics

3. **Perception:** Sensor for MR, Representing uncertainty, Error propagation, Feature extraction – range data, Feature extraction – vision

4. **Localization:** Challenges in localization, Map representation, Map-based localization, Other localization methods, Automatic map building

5. **Planning and Navigation:** Path planning, Obstacle avoidance, Navigation architectures, Control localization, Techniques for localizations

Pre-requisite Courses: None.

Reference Book(s):

UE16CS451:

INTRODUCTION TO SOFTWARE TESTING (2-0-0-0-2)

Course Objectives:
The objective(s) of this course is to,

- Introduce the concepts of Software Quality and types of testing
- Familiarize with different levels of testing – Unit, Integration, System and Acceptance Testing
- Familiarize with Non-functional Testing and Regression Testing
- Introduce to software testing tools
- Understand the advances in testing field like cloud and mobile testing

Course Outcomes:
At the end of the course the student will be able to,

- Apply the concepts of Quality Engineering
- Apply proper testing technique at different phases of development
- Understand cost of quality
- Gain hands-on exposure to few testing tools

Course Content:

3. **Black Box Testing**: Definition and overview, Test Case Design techniques for Black Box Testing: Specification based test design and Requirements Traceability Matrix, Positive and negative testing, Equivalence Partitioning, Boundary Value Analysis, Decision Tables, Advantages and disadvantages. **White Box Testing**: Definition and Overview. **Gray Box Testing**: Definition

5. **Testing Tools**: JUnit, JMeter, Monkey Talk, Appium, Robotium, Selenium, Selendroid, UI Automator and Magneto. Discuss the tools and do a comparative study. Hands on in a 2 hour lab session

Pre-requisite Courses: None.

Reference Books:

UE16CS452: INTRODUCTION TO BUSINESS (2-0-0-0-2)

Course Objectives

- Understand the different types of business ownership
- Understand how a modern business organization works
- Understand the importance of marketing and the activities involved in it
- Understand how a business organization is run and managed
- Understand the activities required to set up a start-up company

Course Outcomes
At the end of the course the student will be able to

- Describe the various legal forms of business ownership
- Explain the functions and working of a business organization
- Describe the processes involved in product/services strategy
- Explain the role of management in a business organization
- Explain the factors that can make a startup company successful
Course Content

2. **Introduction and Legal forms of Business**: Historical context of how businesses evolved into their present forms. Family Businesses; Forms of ownership (proprietorship, partnerships, and corporations).

4. **Marketing**: The activities for creating, communicating, delivering, and exchanging offerings that have value for customers, clients, partners, and society at large. Marketing is used to create the customer, to keep the customer and to satisfy the customer. How to tailor a product or service to a target market. Digital marketing and its effect on the traditional marketing methods.

5. **Management**: Setting the strategy of an organization and coordinating the efforts of its employees to accomplish its objectives through the application of available resources, such as financial, natural, technological and human resources.

Pre-requisite Courses: None

Reference Books:

1. Introduction to Business, Student Edition (McGraw Hill)
3. The single biggest reason why startups succeed | Bill Gross (TED Talk)
 https://www.youtube.com/watch?v=bNpx7gpSqbY

UE16CS453:
RESEARCH METHODOLOGY (2-0-0-0-2)

Course Objectives:
The objective(s) of this course is to,
- Define research and identify the systematic steps to be followed.
- Identify the overall process of designing a research study from inception to its report.
- Impart familiarity with ethical issues in educational research, including those issues that arise in using quantitative and qualitative research.
Course Outcomes:
At the end of the course, the student will be able to:
- Understand some basic concepts of research and its methodologies.
- Identify appropriate research topics.
- Select and define appropriate research problem and parameters.
- Prepare a project proposal (to undertake a project).

Course Content:
2. Research Design: Research design and methods – Research design – Basic Principles- Need of research design – Features of good design – Important concepts relating to research design.
3. Sampling design - Steps in sampling design - Characteristics of a good sample design - Types of sample designs - Methods of data collection: Collection of Primary Data, Observation Method, Collection of Data through Questionnaires, Collection of Data through Schedules, Difference between Questionnaires and Schedules, Collection of Secondary Data.
4. Testing of hypotheses - Basic concepts - Procedure for hypotheses testing, flow diagram for hypotheses testing, Important parametric test - Chi-square test.
5. Interpretation and report writing - Techniques of interpretation - Structure and components of scientific reports - Different steps in the preparation - Layout, structure and language of the report - Illustrations and tables - Types of report - Technical reports and thesis

Pre-requisite Courses: None.

Reference Book(s):

UE16CS454:
ADVANCED MACHINE LEARNING (2-0-0-0-2)

Course Objectives:
The objective(s) of this course is to,
- Introduce learning theory of Machine Learning
- Familiarize with complexity theory of techniques in Machine Learning practice
- Understand the notions of computational learning and convex learning
- Become conversant with stochastic optimization technique and their applicability

Course Outcomes:
At the end of the course, the student will be able to:
- Derive and implement optimization algorithms for the advanced models.
- Have a good understanding of the two numerical approaches to learning (optimization and integration) and how they relate to the models described in the course.
- Have an understanding of how to choose a model to describe a particular type of data.
- Know how to evaluate a learned model in practice.
- Understand the mathematics necessary for constructing novel machine learning solutions.
- Appreciate complexity and computational learning theory of sophisticated models

Course Content:

5. **Spectral Clustering and complexities:** Spectral Clustering, Graph Cut , Graph Laplacian and Relaxed Graph Cuts, Unnormalized Spectral Clustering, Information Bottleneck, A High Level View of Clustering, The Rademacher Complexity , Rademacher Calculus , Rademacher Complexity of Linear Classes, Generalization Bounds for SVM.

Pre-requisite Courses: UE16CS203 - Introduction to Data Science, UE16MA251 – Linear Algebra, UE16CS353 – Machine Learning.

Reference Book(s):
3. Appropriate handouts and additional material to be provided in course pack.